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Abstract A both conceptually and practically useful tool for the description of modern

experiments on a single atom or a single system is the quantum jump approach with the

associated quantum trajectories. The underlying ideas are outlined and then extended to

moving systems. A new application to the problem of quantum arrival times is indicated.

1. Introduction

Before the advent of atom and ion traps only experiments involving many atoms
were possible, e.g. atoms in an atomic beam or in a gas. With a beam one would
have a repetition of measurements on an ensemble, while experiments on atoms
in a gas — dilute and with no cooperative effects — can often be viewed as a
simultaneous measurement on an ensemble. This is well adapted to the statistical
interpretation of quantum mechanics. With atom traps, however, and with laser
cooling it became possible to store a single atom (ion) in a trap for hours or days
and to do experiments with it, e.g. study its interaction with light, microwave
radiation or with other atoms.

As a more interesting example of what can happen consider the macroscopic dark
periods (‘electron shelving’) of a single three-level atom as proposed by Dehmelt [1].
The atom is supposed to have a ground state 1 and two excited states 2 and 2′ where
the former is strongly coupled to 1 and decays rapidly, while the latter is metastable.
The 1− 2 transition is strongly driven by a laser, and the 1− 2′ transition is weakly
driven.

Semiclassically the behavior of such a single atom is easy to understand. The
electron makes rapid transitions between levels 1 and 2, accompanied by a stream of
spontaneous photon emissions, in the order of 108s−1. These can be detected (and
even seen by the eye). From time to time the weak driving of the 1 − 2′ transition
manages to put the electron into the metastable level 2′ where it stays for some time
(‘shelving’). During this time the stream of spontaneous photons is interrupted and
there is a dark period. Then the electron jumps back to level 1 and a new light
period begins. In an ensemble of such atoms (e.g. gas with no cooperative effects)
light and dark periods from different atoms will overlap, and consequently one will
just see diminished fluorescence. Only light and dark periods from a single or a few
atoms are directly observable.

In contrast to these semi-classical arguments, quantum mechanically the atom
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will always be in a superposition of the three state |1〉, |2〉, and |2′〉 and never strictly
in state |2′〉 for an extended period, i.e. there will always be a small admixture of
|2〉. Since |2〉 decays rapidly the question arises if the dark periods still occur.
Experiments [2] and early theoretical treatment [3] have answered this affirmatively.
The duration of the dark periods is random and can be seconds or even minutes.

To treat problems like these involving a single system Wilser and the author [4,
5, 6] developed the quantum jump approach which is equivalent and simultaneous to
the Monte-Carlo wave function approach (MCWF) [7] and to the quantum trajectory
approach [8]. Our approach is based on standard quantum mechanics and nothing
new to the latter is added or required. In the next section we will give a short
exposition of the quantum jump approach with its associated random (‘quantum’)
trajectories for a single radiating system at rest. This is then generalized to a moving
system. As a new application a model for quantum arrival times is indicated.

2. Repeated gedanken measurements on a single system:
Jumps and random trajectories

We briefly review the ideas underlying our approach to a system radiating pho-
tons. It is based on standard quantum mechanics and adds no new assumptions
or properties to the latter. It has turned out to be a practical tool for questions
concerning a single system and often has technical and conceptual advantages. More
details as well as applications can be found in Refs. [4, 6, 9, 10, 11, 12] and in the
surveys [13, 14].

It is intuitively reasonable that it should make no difference physically whether
or not the photons radiated by an atom are detected and absorbed once they are
sufficiently far away. It therefore suggests itself to employ gedanken photon mea-
surements, over all space and with ideal detectors, at instances a time ∆t apart[15].
For a single driven atom this may look as in Fig. 1. Starting in some initial state

. . . . . . . . . .
↓

first photon

տ no photon detected ր

∆t

Figure 1: Repeated photon measurements.

with no photons (the laser field is considered as classical), at first one will detect no
emitted photon in space and then at the n1-th measurement a first photon will be
detected (and absorbed), the next photon at the n2-th measurement and so on.

Limits on ∆t: (i) Ideally one would like to let ∆t→ 0 to simulate continuous mea-
surements. But this is impossible in the framework of standard quantum mechanics
with ideal measurements due to the quantum Zeno effect [16]. (ii) Intuitively, ∆t
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should be large enough to allow the photons to get away from the atom. (iii) ∆t
should be short compared to level life-times. This leads to the requirement [17]

∆t ∼= 10−13 − 10−10s .

We translate these gedanken measurements on a single atom into an ensemble
description as follows. Let E be an ensemble of many atoms, each with its own
quantized radiation field, of which our individual atom plus field is a member. At
time t0 = 0 the ensemble is described by the state |0ph〉|ψA〉. Now we imagine that
on each member of E photon measurements are performed at times ∆t, ..., n∆t, ... .
Now we denote, for n = 1, 2, ..., by E

(n∆t)
0 the sub-ensemble which consists of all

systems of E for which at the times ∆t, ..., n∆t no photon was detected. This is
depicted in Fig. 2 where our individual system, atom plus radiation field, is denoted
by a dot · , and it is a member of E

(n∆t)
0 for n < n1.

. EE
(n∆t)
0

E
(∆t)
0

Figure 2: Ensemble E and sub-ensembles. The dot denotes our single system.

Now one can proceed by ordinary quantum mechanics and the von Neumann-
Lüders reduction rule [18]. Let P0 be the projector onto the no-photon subspace,

P0 ≡ |0ph〉1A〈0ph| (1)

and let U(t, t0) be the complete time-development operator, including the laser
driving and the interaction of the atom with the quantized radiation field. Then the
sub-ensemble E

(∆t)
0 is described by

P0U(∆t, 0)|0ph〉|ψA〉 (2)

and the sub-ensemble E
(n∆t)
0 by

P0 U(n∆t, (n− 1)∆t)P0...P0 U(∆t, 0)|0ph〉|ψA〉 ≡ |0ph〉|ψA(t)〉 (3)

where we have put t ≡ ∆t. The relative size of the sub-ensemble E
(n∆t)
0 is the

probability to find a member of E in E
(n∆t)
0 and is given by the norm-square of the

above expression. Hence

P0(t) ≡ ‖ |ψA(t)〉‖2 (4)

is the probability to find no photon until time t = n∆t. To calculate |ψA(t)〉 we
note that

P0 U(t′ + ∆t, t′)P0 = |0ph〉〈0ph|U(t′ + ∆t, t′) |0ph〉〈0ph| (5)
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and that the inner expression is a purely atomic operator which is easily obtained by
second order perturbation theory. For ∆t in the above limits one then obtains, on a
coarse-grained time scale (for which ∆t is very small), that the time development of
|ψA(t)〉 is given by a ‘conditional‘, or ‘reduced‘, non-Hermitian Hamiltonian Hcond

in the atomic Hilbert space where, for an N -level atom,

Hcond = HA(t) − i~Γ (6)

with HA(t) the atomic part of the Hamiltonian, including the laser driving, and

Γ ≡
∑

αij

α<i,j

Γiααj |i〉〈j| (7)

Γijlm ≡ e2〈i|X|j〉 · 〈l|X|m〉 |ωlm|
3/(6πǫ0~c

3) (8)

and eX the dipole operator. Γ consists of generalized damping terms, and we note
that

Γiααi ≡ Γiα =
1

2
Aiα

where Aiα is the Einstein coefficient for the transition from level i to level α. Thus,
on a coarse-grained time scale, one obtains

|ψA(t)〉 = T exp{−i

∫ t

0

dt′Hcond(t
′)/~}|ψA(0)〉 (9)

≡ Ucond(t, 0)|ψA(0)〉 . (10)

In an obvious extension to density matrices,

ρ0
A(t) ≡ Ucond(t, 0)ρA(0)Ucond(t, 0)† (11)

describes the sub-ensemble with no photon detection until time t, with the corre-
sponding no-photon probability given by

P0(t) = trρ0
A(t) . (12)

Connection with the quantum Zeno effect: If one lets ∆t → 0 in Eq. (3), with
t = n∆t kept fixed, then one easily sees by the same calculation that the probability
to find no photon until time t goes to 1 and that one always stays in the no-photon
subspace. This means that for ∆t → 0 the dynamics is frozen to the atomic subspace,
and this is a particular form of the quantum Zeno effect.

Random path in Hilbert space for a single fluorescent atom: We can now distin-
guish different steps in the temporal behavior of our single atom under the above
gedanken measurements.
(i) Until the detection of the first photon, our atom belongs to the sub-ensembles

E
(n∆t)
0 and hence is described by the (non-normalized) vector

|ψA(t)〉 = Ucond(t, 0)|ψA(0)〉. (13)

(ii) The first photon is detected at some (random) time t1, according to the proba-
bility density

w1(t) = −
dP0(t)

dt
= −

d

dt
‖ |ψA(t)〉‖2 . (14)
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(iii) Jump: With the detection of a photon the atom has to be reset to the appro-
priate state. For example, a two-level atom will be in its ground state right after a
photon detection. The general reset state for systems at rest has been determined
in Refs. [6, 12] and is given in the next section. It may depend on |ψA(t1)〉 where t1
is the detection time of the photon.
(iv) From this reset state the time development then continues with Ucond(t, t1), until
the detection of the next photon at the (random) time t2. Then one has to reset
(jump), and so on.

In this way one obtains a stochastic path in the Hilbert space of the atom. The
stochasticity of this path is governed by quantum theory, and the path is called a
quantum trajectory. The stochastic process underlying these trajectories is a jump
process with values in a Hilbert space. If the reset state is always the same, e.g. the
ground state, one has a renewal process. If the reset state depends on |ψA(ti)〉 one
has a Markov process only.

In case of a renewal process the parts of a trajectory between jumps behave like
an ensemble created by repetition from a single system at stochastic times. In the
general case the reset states can all be different so that this repetitive property is
no longer true.

3. Reset operation and Bloch equations

Since a photon detection is a measurement this induces a state change (jump) and
the atomic state or, more generally, the atomic density matrix ρ(t) is reset to a new
density matrix, denoted by R(ρ), up to normalization, where R is a superoperator
acting on density matrices. Its general form is [6]

R(ρ) =
∑

ijℓm

i>j,ℓ>m

{Γjiℓm + Γℓmji} |j〉〈i|ρ|ℓ〉〈m| . (15)

The normalization is such that the trace of R(ρ(t))dt is the probability to find a
photon in the time interval dt. For a two-level system one easily finds R(ρ) ∝ |1〉〈1|,
i.e. the intuitively expected ground state. In this case the result of the resetting is
a pure state, which simplifies numerical simulations.

As shown in Ref. [6] the ensemble of all possible random paths (quantum trajec-
tories) leads to a reduced density matrix for the ensemble of atoms which satisfies
the usual optical Bloch equations. This is a nice consistency check [19] and can be
seen as folllows.

We consider a large ensemble (N0 → ∞) of quantum trajectories. They will
have jumps at different times. Consider time t, and let the ensemble of systems
(atoms) at t be described by the density matrix ρ(t). Then in (t, t + dt) (coarse-
grained timescale!) a subensemble of systems will have no photon detection, and
this subensemble is described, including relative size, by

Ucond(t, t+ dt)ρ(t)U+
cond(t, t+ dt) (16)
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and those with a photon detection are described by (including relative size)

R(ρ(t))dt (17)

Hence one has

ρ(t+ dt) = ρ(t) −
i

~
{Hcondρ− ρH+

cond}dt+ R(ρ)dt (18)

From this one immediately obtains

ρ̇ = −
i

~
{Hcondρ− ρH+

cond} + R(ρ) (19)

This is a compact form of the Bloch equations for the general N -level system, and
the usual two-level case is easily deduced from this.

Remarks

1. If the Bloch equations are given, and either Hcond or R, one can read off the
other from (19). There are efficient ways to derive master (Bloch) equations
(e. g. the projector method) and then one can guess Hcond and R from it.

2. The quantum jump approach lends itself to simulations of trajectories, and
by averaging many of those one can obtain solutions of the Bloch equations.
If R resets to pure states one has to work in dimensions N of the atomic
Hilbert space instead of dimensions N2 as for Bloch equations. For large N
tremendous numerical advantages arise. The jump operation R will in general
give a density matrix, but one can usually write it as

R(ρ) =
∑

i

RiρR
+
i , (20)

where Ri are operators. One can then simulate a pure state Ri|ψ(t)〉 in each
jump. The resulting trajectories of pure states give the same Bloch equations.

4. Systems with quantized center-of-mass motion

As an example we consider a two-level system with quantized cm motion, inter-
acting with a classical laser and the quantized radiation field. The corresponding
Hamiltonian is of the form

H = P̂/2m+ ~ω21|2〉〈2|+
∑

~ωkâkλ + âkλ + D̂ · Ê(X̂, 0) + D̂ · EL(X̂, t) (21)

where ˆ denotes an operator. The classical laser field is of the form

EL(x, t) = ReE0(x)e−iωLt. (22)
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where we allow for a position-dependent laser amplitude. With

gkλ = ie

√

ωk

2εo~V
εkλ · D12,

one then has in the laser-adapted interaction picture and in the rotating-wave ap-
proximation (RWA),

HL
I = − ~∆|2〉〈2|

+ |1〉〈2|
∑

gkλâk,λ exp{−i(ωk − ωL)t} exp{ik · (X̂ + P̂t/m)} + h.c.

+
1

2
|1〉〈2|Ω(X̂ + P̂t/m) + h.c. (23)

where ∆ = ωL − ω21 and the position-dependent Rabi frequency is

Ω(x) = 〈1|D̂|2〉 · E0(x).

We consider the Dyson series of the time-development operator from t to t+∆t and
keep only terms proportional to ∆t. Then the laser contributes to the first order
only. and the second-order term in the time-development operator becomes

(

−
i

~

)2

〈0ph|

∫ t+∆t

t

dt′
∫ t′

t

dt′′HL
I (t′)HL

I (t′′) |0ph〉 =

1

~2
|2〉〈2|

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∑

kλ

|gkλ|
2 exp{i(ωk − ωL)(t− t)}

exp{ik · (X̂ + P̂t′/m)} exp{−ik · (X̂ + P̂t′′/m)} . (24)

where the laser terms have been omitted since they are proportional to (∆t)2. We
note that

X̂(t′) = X̂ + P̂t′/m)

is the time development of X̂ in the free Heisenberg picture of the cm motion of the
system. If ∆t is small and the atom not moving too fast, then

X̂(t′) ≈ X̂(t′′)

and the last two exponentials cancel. This leads to the damping term −1
2
A|2〉〈2| as

in the two-level case without cm motion and one obtains as conditional Hamiltonian

HI
cond = P̂2/2m− ~∆|2〉〈2| −

i

2
~A|2〉〈2| +

~

2
Ω(X̂)|1〉〈2|+ h.c. (25)

The reset or jump operation looks somewhat different now. The atomic density
operator ρ now describes both the cm motion and the internal two-level degrees
of freedom. Thus, taking matrix elements with momentum eigenvectors of the cm

motion,
ρ(p,p′) ≡ 〈p|ρ|p′〉
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one obtains an operator for the internal degrees of freedom, i.e. a 2 × 2 matrix.
With the Hamiltonian in Eq. (21) a calculation similar to that in Ref. [6] gives for
the reset operation after a photon detection

〈p|R(ρ)|p′〉 = A|1〉〈1|

∫

dΩk(1 −
|k̂ · D|2

D2
)〈2|ρ(p + ~ω21k̂/c,p

′ + ~ω21k̂/c)|2〉 (26)

where the integration is over the unit vectors k̂. The first factor in the integral is
the usual dipole emission characteristics and the terms ~ω21k̂/c yield momentum
conservation after the photon emission. We note that the resulting reset matrix is
a pure state only for internal degrees of freedom but not for the cm variables, even
if the density matrix before the photon detection is a pure state.

Instead of asking for the detection of any photon one may ask a photon detection
in a given direction k̂. Then the reset operation is given by

〈p|R
k̂
(ρ)|p′〉 = A|1〉〈1| (1−

|k̂ · D|2

D2
)〈2|ρ(p + ~ω21k̂/c,p

′ + ~ω21k̂/c)|2〉 (27)

and the probability to detect a photon with direction in the solid angle dΩk in the
time interval dt is given by

TrR
k̂
(ρ) dΩk dt .

If ρ is a pure state in momentum space this is again a pure state. Averaging Eq. (27)
over all directions gives the reset matrix in Eq. (26).

5. Application to quantum arrival times

An important open problem in quantum theory is the question of how to formu-
late the notion of “arrival time” of a particle, such as an atom, at a given location,
i.e. the time instant of its first detection there. This is clearly a very physical
question, but when the extension and spreading of the wave packet is taken into
account, a satisfactory formulation is far from obvious. The problem of time in
quantum mechanics, both for time instants and time durations such as dwell time,
has received a great deal of theoretical attention recently [20, 21]. When the trans-
lational motion of the particle can be treated classically, a full quantum analysis of
arrival time is in fact not necessary. This is the case for fast particles, and therefore
arrival times are presently measured mostly by means of time-of-flight techniques,
whose analysis is carried out in terms of classical mechanics. Problems, though, arise
for slow particles for which the finite extent of the wavefunction and its spreading
become relevant, such as for cooled atoms dropping out of a trap. Then a quan-
tum theoretical point of view is needed. It is therefore important to find out when
the classical approximations fail and to propose measurement procedures for arrival
times in the quantum case. Since the theoretical definition of a quantum arrival time
is still subject to debate it is necessary to determine what exactly such measure-
ment procedures are measuring and to compare such operational approaches with
the existing, more abstract and axiomatic, theories.
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An experimentally very natural approach to determine the arrival time of an
atom is by quantum optical means. A region of space may be illuminated by a laser
and upon entering the region an atom will start emitting photons. The first photon
emission can be taken as a measure of the arrival time of the atom in that region.

It is easiest to first study the one-dimensional case and use the corresponding
equations of the preceding section. Eq. (25) then simply becomes one-dimensional
in p and x. Illuminating the half axis x > 0 perpendicularly by a laser, the Rabi
frequency Ω(x) becomes a multiple of the step function Θ(x). In Ref. [22] the
corresponding conditional time development has been solved explicitly and the dis-
tribution of the first-photon times have been calculated. If one deducts by a decon-
volution technique the delays due to finite pumping time one obtains in the limit of
weak pumping a surprising result for the arrival time distribution, namely the usual
well known quantum mechanical probablity flux.
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