
version 1 (mar 25, 98) 1

Algebraic Quantum Field Theory

Klaus Fredenhagen, Karl-Henning Rehren

Quantum Field Theory (QFT) is the general
framework for the description of the physics of
relativistic quantum systems, notably of elemen-
tary particles. It is the synthesis of Quantum
Theory and Special Relativity, supplemented by
the principle of Locality in space and time, and
by the Spectral Condition in energy and momen-
tum (see below). Algebraic QFT (AQFT) em-
phasizes the role of algebraic relations among ob-
servables which determine, rather than quantum
fields proper, a physical system. Its foundations
were laid in the 1960s by R. Haag and D. Kastler,
and the theory was develloped further by, among
others, H.-J. Borchers and H. Araki.
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Fig. 1: The position of AQFT within the theory of

(special-)relativistic quantum fields

Like the earlier ↗Wightman theory, AQFT an-
alyzes the general features of quantum field
theoretical models in the light of fundamen-
tal physical principles, in order to resolve con-
ceptional difficulties with perturbative and eu-
clidean (imaginary time) approaches. It for-
mulates a general relativistic quantum theory
and the relevant physical concepts and their in-
terrelations in a model independent language.
Its method is characterized by the description
of phenomenological properties of a system in
terms of comprehensive mathematical notions;

this enables the application of mathematical the-
orems which acquire a physical significance. By
its universality, the algebraic language qualifies
best for the capture of universal principles of
physics.

AQFT establishes analytic strategies in order
to deduce structural properties of the systems
under consideration, such as the particle con-
tent of the theory, from the algebra of observ-
ables and its representations. Particles are there-
fore considered as a dynamical feature rather
than a kinematical datum coupled to the a pri-
ori fields of a phenomenological Lagrangean. In
fact, AQFT does not use a Lagrangean, nor does
it appeal to an underlying classical theory.

AQFT also enables the exact construction of
simple relativistic models (P(φ)2 and Yukawa2

models as well as conformally invariant models
in two dimensions). Its methods are likewise
successfully applied to the study of phase tran-
sitions in non-relativistic models in Statistical
Mechanics (e.g., spin systems).

The emphasis on the algebraic structure rather
than on the fields of a theory responds to the fact
that (in the language of Wightman theory) many
different fields can be chosen which all describe
the same scattering processes (Borchers classes);
e.g., the odd Wick polynomials of a free massive
field belong to the same class. As each field from
a Borchers class generates the same local alge-
bras, and as, vice versa, scattering states can be
constructed solely in terms of local algebras, the
latter have to be considered as the relevant en-
tities. From this point of view, Wightman fields
are – inspite of their ambiguity – a powerful tool
in order to implement Locality and Poincaré Co-
variance (see below). The transition between the
Wightman and the algebraic formulation is not
yet completely controlled, but it is known that
AQFT admits quantum systems which do not
support actual fields. (For this reason, the name
“Local Quantum Physics” is often preferred.)

Another motivation for the algebraic point of
view arises from the fact that quantum systems
with infinitely many degrees of freedom, unlike
↗Quantum Mechanics, possess many inequiv-
alent physical representations. These describe
classes of states between which there is no in-
terference possible (superselection rules or sec-
tors). The conceptional dichotomy between the
algebra (specifying the physical system) and its
representations (the possible preparations of the
system) is a basic feature of AQFT and consti-
tutes one of its conceptional advantages.
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The axioms of AQFT: interpretation and
consequences

AQFT formulates a system of axioms, among
which we shall here distinguish three types:
– structural axioms, paying tribute to the quan-
tum nature as well as to the local nature of the
objects to be described (Hilbert space, localiz-
ability, see below);
– relativistic axioms, in order to comply with
the principles of↗Special Relativity (Causality,
Covariance, Spectral Condition, see below), and
– a range of specific assumptions, which can be
varied in order to distinguish and identify differ-
ent types of theories or states (mass spectrum,
Haag duality, phase space properties, inner sym-
metries, see below).

The axioms are not considered as absolute, but
are instead themselves issues of research and
subject to discussion within an evolving scien-
tific area; they are designed to capture universal
phenomenological evidence in the form of model-
independent principles.

Observables and fields

↗Quantum Theory describes physical measure-
ments and operations in terms of “observables”.
These are representable as selfadjoint operators
on a Hilbert space, in which density matrices
describe pure and mixed states. This setting
guarantees the probabilistic interpretation, ac-
cording to which matrix elements of operators
are transition amplitudes or expectation values.
In each representation, the bounded operators
form a concrete C* algebra. The entirety of
its representations can be characterized by an
abstract C* algebra which is studied by means
of the highly develloped mathematical theory of
operator algebras.

In modern physics, all elementary particles and
their interactions are described in terms of “rel-
ativistic quantum fields”: these are operators
varying with space and time, promoting ↗M.
Faraday’s classical notion of fields with a dynam-
ical law into Quantum Theory, in compliance
with↗A. Einstein’s theory of↗Special Relativ-
ity. While not all quantum fields correspond to
physically realizable operations (non-observable
fields), yet all observables are expressed by them.
AQFT takes care of the field concept by the
assertion that a physical system is completely
described by the specification of its local ob-
servables: for this purpose, with every region
in space-time is associated the algebra of those
observables which can be measured in the re-
gion; all observables can be approximated by lo-

cal ones. It is avoided to rely on non-observable
fields which as such are not accessible to mea-
surement.

The local algebras cannot be independently
specified. First of all, they must increase with
their regions of localization (isotony). Further-
more, the propagation speed of dynamical pro-
cesses being limited by the ↗speed of light is
expressed by the axiom of Primitive Causality;
it requires that the algebra associated with a
region of arbitrarily narrow temporal extension
contains all observables in the causal future and
past of this region.

The mutual influence of two physical observables
is reflected in algebraic commutation relations
between the corresponding operators. In partic-
ular, observables localized in causally indepen-
dent regions of space-time must be represented
by commuting operators (Locality). Any alge-
braic structure beyond the algebraic coding of
Locality distinguishes the physical system under
consideration.

Unlike quantum mechanical particles, quantum
fields comprise infinitely many degrees of free-
dom. Such systems possess many inequivalent
representations, that is, different realizations
by Hilbert space operators; the corresponding
equivalence classes of states are called (super-
selection) sectors. Superselection sectors are a
global concept: they are given by, e.g., a “total
charge of the universe” which cannot be mea-
sured with finite experimental effort.

It is therefore appropriate to consider the ab-
stract system as an algebraic structure; its con-
crete preparation in a global state (evoking an
idealization) is described by the choice of the
representation. Not all representations, how-
ever, are of physical interest: therefore suit-
able selection criteria have to be imposed on the
states (see below).

Symmetries

Throughout in Quantum Theory, symmetries
play a prominent role. Outer symmetries are
symmetries of space and time according to Spe-
cial Relativity, while inner symmetries relate,
say, particles of equal mass but different charge.
Inner symmetries are a most successful principle
for phenomenological theories.

One distinguishes the symmetry of a system
(that is, an algebraic automorphism) from its
realization in specific states. It is conceivable
that a system possesses a symmetry which in
a given representation cannot be implemented
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by a unitary operator (“spontaneous symmetry
breakdown”). In general, the invariance group
of Special Relativity (↗Poincaré group: trans-
lations and Lorentz transformations, that is, ro-
tations, boosts, and reflections) with the excep-
tion of space and time reflections is postulated
as space-time symmetries of the algebra. The
full symmetry is realized in states “of particle
type” which are considered for the study of scat-
tering processes; characteristic for such states is
the vanishing mean energy density and finite to-
tal charge. In contradistinction, Lorentz symme-
try is broken in thermal equilibrium states (see
below).

In a translationally covariant representation, the
operators of energy and momentum are well de-
fined, and their spectrum can be studied. In
physically reasonable states of particle type, the
spectrum should be bounded below (Spectral
Condition) since only a finite amount of energy
can be extracted from a state with finitely many
particles. In fact, the Lorentz covariance of the
algebra is sufficient to establish the Lorentz in-
variance of the “lower edge” of the spectrum,
even if this symmetry is broken. A representa-
tion contains a vacuum state if this lower edge is
a point; a mass hyperboloid instead corresponds
to a massive particle. Other possibilities charac-
terize, e.g., massless particles or “infraparticles”.

A prominent example for the algebraic inter-
play between spectral and invariance properties
of states is the Goldstone theorem, according to
which a continuous inner symmetry cannot be
broken unless the representation contains mass-
less excitations. AQFT allows to extend this
theorem beyond its conventional field theoretic
formulation, and to point out its limitations as
well.

Unlike states of particle type, thermal states of a
system of infinite size allow for the extraction of
an arbitrary amount of energy. Therefore, the
spectral condition is not adequate for thermal
states. The↗Gibbs formulation of the canonical
ensemble which is successful in quantum statis-
tics, is not applicable to systems of infinite size
due to the continuous energy spectrum. It is
replaced by the Kubo-Martin-Schwinger (KMS)
condition which distinguishes thermal equilib-
rium states in terms of an analyticity property
of the dynamical correlation functions.

Local algebras in a relativistic QFT must be al-
gebras of type III (in the von-Neumann classi-
fication scheme) which do not possess minimal
projections. This implies that – in contradistic-

tion from non-relativistic systems – every state
is locally impure; any global state may well be
approximated by local operations with arbitrary
precision, yet it always remains locally indistin-
guishable from an infinity of other states due to
quantum fluctuations in the causal complement.

The global symmetries of space and time are (un-
der suitable conditions) determined by the local
algebras along with the vacuum state. This fact
is due to an application of the “modular theory”
of abstract von-Neumann algebras of type III,
which associates with every state an adapted dy-
namics with respect to which this state is a ther-
mal equilibrium state. For certain local algebras
in the vacuum state, this dynamics is a subgroup
of Lorentz transformations (boosts). The mod-
ular theory provides an algebraic proof of the
↗CPT Theorem (invariance under simultaneous
inversions of space, time, and charge) as well as
a new explanation of the ↗Unruh effect (an ac-
celerated observer in Minkowski space-time per-
ceives a temperature in the vacuum) and, in
the presence of gravitational horizons, of the
↗Hawking radiation of black holes. Even the
spectral condition can be formulated as a mod-
ular property of inclusions of local algebras.

A variety of specific assumptions concerns the
“size” of local algebras of observables. The as-
sumption that the observables in small space-
time subregions generate the algebra of a large
region (additivity), excludes theories exhibiting
“fundamental units of length”. Thermodynam-
ical properties are anticipated in terms of as-
sumptions on the size of ↗phase space (com-
pactness, nuclearity); closely related is the prob-
lem whether different states can be prepared in
causally disjoint regions (split property). AQFT
establishes a multitude of logical relations be-
tween phase space assumptions and, e.g., the
shape of mass spectra or the quantitative vio-
lation of ↗Bell’s inequalities.

Superselection sectors

Along with the general possibility of superselec-
tion sectors arise the questions what sectors are
realized in a given theory, and what physical in-
terpretation they can be given.

Of particular interest for the theoretical analy-
sis of superselection sectors is a property called
Haag duality. It states that the local algebras
are maximal in the sense that any assignment of
further operators to them would violate the ax-
iom of Locality. According to the set of regions
for which Haag duality holds, there are weaker
and stronger versions. Weak versions of Haag
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duality can be proven in many models, while
their violation is a signal from spontaneously
broken symmetries. A stronger version can be
disproved in models with global but not local
↗gauge symmetry. The possibility is of great
interest that↗Gauß’ law in local gauge theories
might restore even strong Haag duality, and that
conversely this property might characterize local
gauge theories.

The theory of superselection sectors is founded
on the basis of weak Haag duality. It leads to a
general concept of charge and explains the laws
governing charge composition. It provides an in-
trinsic description of (particle) statistics as well
as a field-independent proof of the↗Theorem of
Spin and Statistics which correlates the ↗Bose-
Einstein and ↗Fermi-Dirac statistics with in-
teger and half-integer spin, respectively. Its
most eminent result, however, is the proof of
a symmetry principle: all superselection sectors
“of particle type” can be attributed to a global
inner gauge symmetry group acting on local-
ized “charged fields” and preserving the vacuum;
the observables are identical with the gauge in-
variants, and the superselection charges coin-
cide with the gauge charges. The algebra of
charged operators shares all abstract properties
of observables, except causality being replaced
by causal anti-commutativity in the presence of
fermionic sectors. Hence, it is itself accessible to
the methods of AQFT.

The class of sectors treated in the basic form
of this theory is characterized by a – somewhat
ad hoc – selection criterion, which claims the
transportability of charges to arbitrarily distant
bounded space-time regions. It has been proven,
however, that all massive states which behave
asymptotically like vacuum states indeed admit
a transportable localization of charge at least in
arbitrarily narrow regions of the shape of conical
space-like tubes. Such charge tubes are inter-
preted as the algebraic manifestation of “gluon
strings” in non-abelian gauge theories.

Various generalizations of the theory of superse-
lection sectors have been established. Integrable
models in one space dimension exhibit soliton
sectors which asymptotically connect two differ-
ent vacuum states. The Fermi-Bose alternative
of statistics is relaxed in low-dimensional the-
ories; the study of possible statistics and their
realization in conformally invariant QFT has
reveiled unforeseen interrelations with areas of
pure mathematics (theory of knots and theory
of subfactors).

Perspective

AQFT is also concerned with the problematiza-
tion of the concept of particles. This concept in
its usual form does not capture properly, e.g., the
electron in↗Quantum-Electro-Dynamics which
cannot be separated from its surrounding “pho-
ton cloud”. ↗Quarks in ↗Quantum-Chromo-
Dynamics do not occur as isolated charged parti-
cles, being permanently confined by color forces.
AQFT has develloped extensions of the particle
concept in order to incorporate these particles.

The problematic issue of particles is considered
as characteristic for local gauge theories. It can-
not be separated from the difficulty that such
theories in all their modern formulations nec-
essarily rely on non-observable objects which
defy a probabilistic interpretation in the sense
of quantum theory, and which therefore fall be-
yond the range of validity of most mathemati-
cal propositions exploited in AQFT. The char-
acterization of gauge theories in terms of alge-
braic properties solely of their observables, as
well as the subsequent treatment by the meth-
ods of AQFT is still lacking.

The notions of AQFT are – with appropriate
modifications – applicable to QFT on curved
space-time, that is, the semi-classical theory of
↗General Relativity. Most results, however,
which depend on Lorentz invariance and the
spectral condition cannot be maintained since
a curved space-time will in general not possess
global symmetries. Alternative approaches in
which local properties substitute global space-
time symmetries are a current topic of research.

A true theory of Quantum Gravity in the
spirit of AQFT will have to abandon the ab-
solute causal structure of space-time, which in
Quantum Gravity must itself be subject to the
↗Heisenberg uncertainty.
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