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Abstract

Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field
theories, when braid group statistics prevents ordinary group symmetries. Charged fields
transform linearly in finite multiplets, and the observables are precisely the gauge invariants.
Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory
of local observables are discussed.

1 Introduction
On several occasions at the Arnold Sommerfeld Institute at Clausthal (and elsewhere) I have
addressed the field problem and the symmetry problem in the theory of superselection sectors
of low-dimensional models of quantized fields [1,2].

The field problem raises the question whether the algebra of physical observables can be
embedded into a field algebra containing sufficiently many charged fields to generate from the
vacuum all superselection sectors of the observables. The identification of a sensible class
of gauge symmetries in a given model with braid group statistics (which precludes symmetry
groups) constitutes the symmetry problem.

The field problem can always be solved by a canonical construction of intertwining field
operators, which was introduced in [3] and called the “reduced field bundle” (with commutation
relations in the form of an exchange algebra). Yet, I have myself rejected this answer as a useful
candidate for the ambient field algebra. The reason was the apparent absence of a decent sym-
metry under which the reduced field bundle transforms, with the observables as the invariants
(the “gauge principle”).

A main point in this report is the observation that the reduced field bundle does possess a
symmetry which I have previously overlooked. In fact, it is invariant under the action of a weak
C* Hopf algebra. Weak C* Hopf algebras [4,5] (and related objects [6]) are comparatively
conservative generalizations of finite symmetry groups. The coproduct is non-commutative and
does not map the unit operator onto the unit operator. Unlike quantum groups [7], however, it
preserves the ∗-structure, and unlike quasi quantum groups [8], it is coassociative. Unlike the
combinatorial concept of a paragroup [9], and unlike my personal attempts with C* symmetries
[2], its action on the field algebra is determined by a linear transformation law on finite tensor
multiplets of charged fields.

Weak C* Hopf symmetries are by no means restrained to the reduced field bundle. They are
rather the natural symmetry concept associated with finite index subfactors of depth 2. If such
a subfactor is irreducible, then the symmetry is in fact a C* Hopf algebra; so its “weakness”
is precisely due to reducibility. The depth 2 condition has rather a technical meaning (“all
irreducible components of the subfactor A ⊂ B2 are already contained in A ⊂ B”), and in
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the case of irreducible subfactors becomes a simple structural property (“A′ ∩B2 is a factor”).
Here B2 is the second Jones extension of A ⊂ B.

Weak C* Hopf algebras possess unitary matrix representations. The size of the correspond-
ing multiplets (of charged fields) is, in contrast to the true Hopf case, different from the quantum
dimension of the corresponding bimodule (statistical dimension of the associated superselection
sector). Consequently, the obstruction against non-integer quantum (or statistical) dimensions
which seemed always inherent to C* symmetries, is absent for weak C* Hopf symmetries.

2 Weak C* Hopf algebras
The following defining system of axioms for weak C* Hopf algebras is due to ref. [4], to which
we also refer for further details. Our emphasis here is on the departure from true C* Hopf
algebras.

(A) A finite dimensional weak C* Hopf algebra is a C* algebra with 1l (hence a direct sum
of matrix rings) with the additional structures coproduct, counit and antipode.

The coproduct is a coassociative ∗-homomorphism ∆:Q → Q ⊗ Q. The counit is a
positive linear map ε:Q → C and satisfies the compatibility condition with the coproduct:
(ε ⊗ id)◦∆ = id = (id ⊗ ε)◦∆. The antipode is a complex-linear anti-homomorphism and
anti-cohomomorphism S:Q→Q (i.e., it reverts the order of the product and of the coproduct),
and is inverted by the ∗-structure: S−1(q) = S(q∗)∗.

(B) The three axioms in the left column hold, as opposed to the corresponding three stronger
axioms for true C* Hopf algebras in the right column.

Weak:

{
∆(1l) ≡ 1l(1) ⊗ 1l(2) = Projection
ε(qp) = ε(q1l(1)) · ε(1l(2)p)

S(q(1))q(2) ⊗ q(3) = (1l⊗ q) ·∆(1l)

True:

{
∆(1l) = 1l⊗ 1l

ε(qp) = ε(q) · ε(p)
S(q(1))q(2) = ε(q)1l

(We use the shorthand notation q(1) ⊗ q(2) for the expansion of ∆(q).) Along with the three
weak axioms, either of the three stronger axioms implies the other two. Therefore these three
axioms for true C* Hopf algebras cannot be independently relaxed.

(C) The dual Q̂ is defined by the linear maps {q̂:Q→ C}. The structure data of Q are
canonically dualized by the pairing, and by 〈q̂∗, q〉 = 〈q̂, S(q)∗〉 the dual is given a ∗-structure.
Q̂ with data (1̂l = ε, ∆̂, ε̂, Ŝ) and ∗ is again a weak C* Hopf algebra.

(D) A (left) action of a weak C* Hopf algebra Q on a C* algebra B is a unital algebra
homomorphism from Q into the linear maps of B into B, denoted by b 7→ (q . b), satisfying

q . (b · c) = (q(1) . b) · (q(2) . c),

(q∗ . b∗)∗ = S−1(q) . b

(
q ∈ Q
b, c ∈ B

)

.

An element a of B is called invariant under the action, if q . a = q(1)S(q(2)) . a. The invariant
elements form a ∗-subalgebra A ≡ BQ ⊂ B.

3 Subfactors of depth 2
We consider a pair A, B of von Neumann factors of type III, along with an injective unit-
preserving homomorphism ι:A → B. A may be thought of as a subfactor of B, and ι the
inclusion map.



(A) [10] The subfactor A
ι⊂→ B has finite index if and only if there is a homomorphism

ῑ:B→A (the conjugate) and a “standard” pair of isometries w ∈ A, v ∈ B satisfying

wa = %(a)w (a ∈ A),

w∗ῑ(v) = λ−
1
2 · 1lA,

vb = γ(b)v (b ∈ B),

v∗ι(w) = λ−
1
2 · 1lB ,

where γ = ι◦ῑ and % = ῑ◦ι are the canonical and dual canonical endomorphisms of B and A,
respectively, associated with the subfactor. λ > 1 is called the index of the subfactor associated
with the pair w, v. In the following we assume w and v to minimize the index.

(B) [11] A “canonical triple” (%, w, x) consists of an endomorphism % of A and a pair of
isometries w, x in A satisfying the relations (λ2 being the index of %(A) ⊂ A)

wa = %(a)w, x%(a) = %2(a)x (a ∈ A);

xx = %(x)x, xx∗ = %(x∗)x, w∗x = λ−
1
2 1lA = %(w∗)x.

These relations make certain that % is a canonical endomorphism, i.e., one can draw a “conjugate
square root” % = ῑ◦ι with w, v as in (A) and x = ῑ(v).

Every such triple characterizes, up to isomorphism, an ambient algebra B such that

%(A) ⊂ A1 ⊂ A
ι⊂→ B

is a sequence of Jones extensions of index λ. Here A1 is the intermediate algebra generated
by %(A) and x, from which B is obtained by the Jones construction. (An additional non-
redundancy condition on the triple prevents B from having a center. We shall tacitly always as-
sume that B is a factor.) The minimal conditional expectation from B onto A is µ = w∗ῑ( · )w.

(C) [5] A dual pair of weak C* Hopf algebras is associated with every reducible subfactor of
finite index λ and of depth 2. As algebras, these are the relative commutants Q := ῑ◦ι(A)′ ∩A
and Q̂ := ι◦ῑ(B)′ ∩B. They are direct sums of matrix rings corresponding to the subsectors of
ῑ◦ι resp. ι◦ῑ and their multiplicities, and have the same finite dimension.

Let z be the positive central element in the relative commutant ι(A)′ ∩ B with value√
ns/ds on each of the minimal central projections ps of the relative commutant, where d2

s is
the index of the corresponding reduced subfactor, and ns is its multiplicity. Let z̄ in the relative
commutant ῑ(B)′ ∩ A be defined analogously, and put •v := zv ≡ ι(z̄)v, •w := z̄w ≡ ῑ(z)w,
and ◦v := z−1v ≡ ι(z̄−1)v, ◦w := z̄−1w ≡ ῑ(z−1)w.

The algebras Q and Q̂ are put into duality by the nondegenerate pairing

〈q̂, q〉 := λ · w∗ῑ(•v)∗qῑ(q̂)
•
ww ≡ λ · v∗ι( •w)∗q̂ι(q)

•
vv.

It induces a coproduct in Q (as a linear map intoQ⊗Q) from the product in Q̂. This coproduct
is in fact a ∗-homomorphism if and only if the depth is 2, i.e., if and only if every subsector of
ι◦ῑ◦ι is already contained in ι.

The counit on Q is the pairing with the unit in Q̂. The antipode on Q is given by the two
equivalent definitions

S(q) = λ · ῑ (ι [
◦
w∗ῑ(

•
v)∗q]

•
v)
◦
w ≡ λ · •w∗ῑ (

◦
v∗ι [qῑ(

◦
v)
•
w])

and is involutive up to a non-unitary conjugation:

S(S(q)) = [z̄−1 ῑ(z)]2 · q · [z̄−1 ῑ(z)]−2.



The dual structures on Q̂ are given by the replacements (A,w, ι) ↔ (B, v, ῑ). All state-
ments here and in the remainder of this chapter are perfectly symmetric under this duality. Our
emphasis will, however, be on those statements which pertain to the natural interpretation A =

fixpoints of B under a symmetry.

Proposition: With the above definitions, Q and Q̂ are a dual pair of finite dimensional
weak C* Hopf algebras. The dual formulae

q . b := λ
1
2 · ◦v∗ι (qῑ(b)

•
w) and q̂ . a := λ

1
2 · ◦w∗ ῑ (q̂ι(a)

•
v)

define an action of Q on the algebra B with invariants BQ = ι(A), and an action of Q̂ on A
such that B is isomorphic with the crossed product of A by Q̂.

The last statement of the proposition means that Q̂ andA are embedded as subalgebras into
B with relations

q̂ · ι(a) = ι(q̂(1) . a) · q̂(2) or equivalently ι(q̂ . a) = q̂(1) · ι(a) · Ŝ(q̂(2)),

and together generate B.
(D) B is spanned by elements Γeι(a) where a ∈ A and Γe ∈ B are intertwiners ι◦%c →

ι associated with every irreducible subsector (“charge”) %c ≺ ῑ◦ι. Under the action of Q
the operators Γe of fixed charge transform as finite multiplets by matrix multiplication of the
corresponding matrix ring of Q. The dimension of each multiplet equals the multiplicity of %c
in ῑ◦ι.

Acting on B with the element ◦w •w∗ of Q (which is related to the Haar measure) annihi-
lates all multiplets of nontrivial charge and averages over those of trivial charge. The effect is
precisely the minimal conditional expectation µ onto A.

(E) The action of Q on B is partly inner in the following sense. The relative commutant
ι(A)′ ∩B is mapped by ῑ onto a subalgebra P of Q such that S(P ) ≡ P̄ = ῑ(B)′ ∩A. P and
P̄ are two commuting subalgebras of Q, and P ·P̄ is a weak C* Hopf subalgebra of Q. One has
∆(p) = ∆(1l)(p⊗ 1l)∆(1l) for p ∈ P [4] and 1l(1)ῑ(b)S(1l(2)) = ῑ(1l . b) = ῑ(b), implying

ῑ(pp̄ . b) = p · ῑ(b) · S(p̄) (p ∈ P, p̄ ∈ P̄ ).

Since P = S(P̄ ) ⊂ ῑ(B) it follows that the action of P · P̄ on B is unitarily implemented by
elements of B. This feature is not surprising since also for group actions it is well known that
an inner action produces a reducible inclusion.

(F) [5] The action of Q on B preserves the subalgebra Q̂, and Q̂ preserves the subalgebra
Q of A. The action of Q on Q̂ satisfies (and is determined by) the rule 〈q . q̂, p〉 = 〈q̂, pq〉, and
vice versa.

4 Application to the field problem
(A) A quantum field theory assigns to every bounded region O in space-time a weakly

closed operator algebra A(O) generated by the fields (in a vacuum representation) localized in
O. The resulting isotonous net of algebras determines the theory, even without knowledge of
the underlying fields. Under standard assumptions of covariance and spectrum condition, the
local algebras are hyperfinite type III factors.

The theory is local if the local algebras associated with two regions at space-like distance
commute with each other. A theory of observables has to be local.



The following results can be found in full detail in [12].
(B) A field extension of a theory of observables A is a (relatively local, but possibly non-

local) isotonous net B such that for every region, A(O) is a subfactor of B(O). Assuming the
existence of a conditional expectation µ:B→A which preserves the localization and leaves the
vacuum state invariant (an unbroken global symmetry in the broadest sense), the dual canonical
endomorphism % associated with a single local subfactor A(O) ⊂ B(O) extends to a covariant
endomorphism % of the entire net of observablesA. The latter is trivial on observables at space-
like distance from O, and is hence a DHR endomorphism [13] localized in O. % is equivalent
to the representation of A on the vacuum Hilbert space of B, and its subsectors are precisely
those superselection charges of A for which there are charged fields within the ambient net B.

(C) Conversely, every “DHR canonical triple” (%, w, x) determines, in terms of observable
data, a field extension B with an unbroken global symmetry. Here % is a DHR endomorphism
of A localized in some region O, w and x are isometries in A(O), and the algebraic relations
as in 3(B) hold with a ∈ A.

The algebra B ≡ B(O) is constructed from the triple as in 3(B) with A ≡ A(O), and the
other local algebras are obtained from it by Poincaré or conformal covariance. It is a nontrivial
result about this construction that the structural properties of the “germinal” local subfactor
A(O) ⊂ B(O) propagate to every other local subfactor. In the sequel, statements about the net
are understood to hold for every local subfactor.

The simple eigenvalue condition ε%x = x on the statistics operator ε% of % decides whether
the net B resulting from the triple is local or not.

(D) A “cheap” way to obtain DHR canonical triples is the following. For any DHR endo-
morphism σ ofA (with finite statistics) there is a standard pair (cf. 3(A)) of isometries w and w̄
inA such that wa = σσ̄(a)w and w̄a = σ̄σ(a)w̄ for a ∈ A. Thus (% = σ◦σ̄, w, x = σ(w̄)) is
a DHR canonical triple. Therefore, every DHR sector σ defines a corresponding field extension
Bσ . If σ is localized in O, then B ≡ Bσ(O) is the Jones extension of A ≡ A(O) by its sub-
factor A1 ≡ σ(A(O)). The local subfactors have depth 2 if and only if all subsectors of σσ̄σ
are already contained in σ.

By the eigenvalue condition (cf. (C)), the nets Bσ are always nonlocal (unless σ is an au-
tomorphism and consequently Bσ = A). Since this statement is not in [12], we provide the
argument here. One applies the standard left-inverse φ(a) = w̄∗σ̄(a)w̄ of σ to the eigenvalue
condition. But φ(x) = w̄ is an isometry while, by the statistics calculus [3,13], φ(εσσ̄σ(w̄))

differs from an isometry by the statistics parameter of σ which is 1/d(σ) times a unitary. There-
fore, equality can hold only if d(σ) = 1.

(E) This “cheap” construction does not provide all DHR canonical triples. Notably an irre-
ducible extension with an outer action of a compact gauge group such that the observables are
the fixed points cannot be of this type. E.g., provided all DHR sectors of A have permutation
group statistics, the Doplicher-Roberts construction [14] determines a graded local extension
with a compact gauge group. Its dual canonical endomorphism % = %reg contains every irre-
ducible DHR sector with multiplicity ns equal to its statistical dimension ds. The isometry x
encodes the Clebsch-Gordan coefficients of the gauge group.

5 Putting things together
In a quantum field theory with superselection sectors, it is desirable to have a field algebra
of charged fields which generate all charged sectors from the vacuum, and a gauge symmetry



acting on the fields with the observables as fixpoints. In order to be of practical use, the transfor-
mation law for the fields should be sufficiently simple and concrete. These demands favour field
extensions with weak C* Hopf symmetry which have transformation laws with finite multiplets,
while in low dimensions it is in general inconsistent to ask for true C* Hopf symmetry.

(A) In order to find field extensions of a given (rational) local quantum field theory of
observables A which have a weak C* Hopf symmetry, one has to look for DHR canonical
triples (%, w, x) such that the resulting local subfactors have depth 2.

(B) An immediate possibility in rational models is to choose σ = σ⊕ the direct sum of all
irreducible DHR sectors of A with multiplicity one, and to proceed as in 4(D). By construction
and since σ⊕ is self-conjugate, the resulting local subfactor A(O) ⊂ B(O) is isomorphic to
σ⊕(A(O)) ⊂ A(O). An explicit unitary equivalence shows [15] that the same holds for the
reduced field bundle extension Bred. Therefore, the reduced field bundle equals the extension
of A by σ⊕. It has depth 2 and a self-dual weak C* Hopf symmetry Q. As algebras, Q and
Q̂ are both isomorphic to the relative commutant σ⊕2(A)′ ∩ A. The latter is a sum of matrix
rings Ms

∼= MatNs(C) labelled by the DHR sectors (“charges”) of A, with Ns equal to their
multiplicities within σ⊕2.

The irreducible multiplets Γeι(a) (cf. 3(D)) coincide with the charged operatorsFe(a) span-
ning the reduced field bundle as defined in [3]. Averaging over the symmetry by the conditional
expectation µ (cf. 3(B,D)) yields the invariant elements

∑
e
Fe(a) where the sum extends over

all edges of trivial charge. These are precisely the observables ι(a) on the extended Hilbert
space.

(C) If all DHR sectors of A have integer statistical dimension, another natural choice is
σ = σreg ≡ %reg (ns = ds, z = 1l = z̄). This choice is possible whenever the observables
are given as the fixed points of another net B under a finite gauge group, e.g., the graded local
Doplicher-Roberts extension in the case of permutation group statistics, cf. 4(E).

In the diagram below, the first row is a Jones sequence due to the gauge symmetry, and so
is the second row by definition of Breg. Since an alternating subsequence of a Jones sequence
is again a Jones sequence, the two obvious vertical equalities imply the third:

A2 = %reg(A) ⊂ A1 ⊂ A ⊂ B ⊂ B1 = B×G
||| ||| ‖

σreg(A) ⊂ A
ι⊂→ Breg

(
A = A(O)

B = B(O)

)

.

It follows that the extension Breg of A by σreg(A) equals the extension of B by A, which in
turn equals the crossed product of B by its gauge group G.

(D) If all sectors of A are simple, then σreg coincides with σ⊕. There is an anyonic field
extension B with an abelian symmetry group such that the dual canonical endomorphism is
%reg = σreg = σ⊕. By combination of (B) and (C), the reduced field bundle is a crossed
product of the anyonic extension by its abelian gauge group.

(E) In the general case with integer statistical dimensions, the Jones extension Breg ofA by
σreg(A) is to the same extent “larger” than Bred as σreg(A) is “smaller” than σ⊕(A). Clearly,
one has no inclusion as algebras but rather a compression by an appropriate projection which
selects σ⊕ ≺ σreg.

(F) By combination of (C) and (E), if the sectors of A have permutation group statistics,
then the reduced field bundle is a compression of the crossed product of the Doplicher-Roberts
graded local field algebra by its gauge group.



6 Discussion
The paragroups assocciated with subfactors of finite index and depth 2 are weak C* Hopf al-
gebras. Weak C* Hopf algebras therefore reconcile the generalized symmetry notions due to
Ocneanu and due to Kac and Drinfel’d. They arise as symmetries in quantum field theoretical
models whenever the local subfactors “observables ⊂ fields” have depth 2 (the condition of
finite index may presumably be relaxed).

Field extensions with global weak C* Hopf symmetries are encoded in terms of the observ-
ables by depth 2 DHR canonical triples (%, w, x). An obvious and not very subtle class of such
extensions, including the reduced field bundle, is described in 4(D). Relations between various
such extensions are clarified. Notably if the observables are the fixed points under a finite non-
abelian gauge group acting on a given field net, it is made clear in which sense the reduced field
bundle exceeds the given field net (it corresponds to its crossed product by the gauge group),
and in which sense it is smaller than the former (it is a compression which removes the gauge
multiplicities).

For a given theory there may exist other (and more “economic” as far as the field problem is
concerned) DHR canonical triples which are not of the form described in 4(D). The correspond-
ing field extensions have a chance of being local or graded local and are therefore a priori more
interesting than those “cheap” ones. Among them are the Doplicher-Roberts reconstruction in
four dimensions, as well as some examples in chiral models (related to conformal embeddings)
which generate only a subset of the superselection sectors of a given model. Since we know of
no systematic way to construct such extensions, and notably we do not have a direct criterium
on the canonical triple which ensures depth 2, we refrain from discussing this important issue
in this report.

The weakness of the Hopf structure reflects the reducibility of the local inclusions of gauge
invariants among the fields. According to 3(E), this feature is due to a nontrivial part of the
quantum symmetry acting innerly on the field algebra. The implementing operators lie in the
intersection of all local field algebras and commute with the observables. In the “regular” case
5(C) with a finite gauge group, they are the global implementers of the gauge group, and in the
reduced field bundle case 5(B), they are the source and range projections going along with the
charged operators [3].

These operators are redundant in order to solve the field problem, in the sense that they do
not have any effect on the observables. Furthermore, they mix up local and global concepts,
albeit on the unobservable level of charged fields. On the other hand, depth 2 and therefore a
linear transformation law with finite dimensional symmetry tensors require their presence. We
consider these peculiar field operators as the price to be paid for a decent symmetry acting on
the charge carrying fields.
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