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ABSTRACT. Various generalizations of Cuntz algebras and their relations to sym-
metry and duality are reviewed. New generalized Cuntz algebras are associated
with a subfactor. A characteristic Hilbert space of basic invariants (with respect
to the generalized symmetry) within these algebras is discussed.

1. MOTIVATION

We consider an irreducible inclusion A C B of properly infinite von Neumann
factors, and denote by « € Hom(A, B) the inclusion map A > a — a € B.
We assume the index to be finite. Then there is a conjugate endomorphism
©: B = A such that w0z € End(B) is the canonical endomorphism of B into A,
and zos € End(A) is its dual [6]. We are interested in the irreducible subsectors
o of tor. If ¢ < tot, then equivalently ¢ < 100, that 1s, there exist intertwiners
in B which satisfy

¥ - 1(a) = vo(a) - ¢ (@€ A). (1.1)

The existence of nontrivial such intertwiners, in turn, characterizes the subsec-
tors of zo¢.

In a specific quantum field theoretical context, A and B may be thought of as
a pair of local algebras of observables and of charged fields, respectively. Under
standard physical assumptions (“unbroken symmetry”, cf. [8]) the dual canon-
ical endomorphism zo: of A extends to a localized endomorphism of the C*-
algebra of observables, and can be identified with the restriction of the vacuum
representation of the field algebra to the observables [8]. The intertwiners (1.1)
are then field operators interpolating between the vacuum representation of the
observables and a charged representation corresponding to g. We shall there-
fore call these intertwiners “charged operators” also in general. The charged
operators form a Hilbert space H of isometries within B.

If A C B has depth 2, then A are the fixpoints under the action of a Hopf
algebra (e.g., a group) G on B, and the Hilbert space of charged operators for
a given subsector g has support projection g in B and carries a unitary repre-
sentation of G [7]. This establishes a correspondence between subsectors of
tot and representations of the symmetry. The duality problem amounts to the
reconstruction of G and B from the knowledge of the relevant endomorphisms
0 € End(A) only [3,4].

One way to do so (if G is a finite group) is to construct, for suitable g
of dimension d, the Cuntz algebra O(H) = O, generated by a d-dimensional
Hilbert space H of isometries of unit support [2], and to extend A by O(H)
by postulating the commutation relations (1.1) for ¢» € H. One thus obtains a
“crossed product by the action of the endomorphism”. In order to recover B,
however, a certain subalgebra of the Cuntz algebra has to be identified with the
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subalgebra O, of A generated by the intertwiners T' € A between powers of p,
that is
T-90"(a)=¢"(a)-T (@€ A). (1.2)

The unitary transformations of H induce automorphisms of O(H). The iden-
tification of the subgroup G C U(H) (the symmetry group) which has ¢(O,)
as its fixpoints within O(H), constitutes the crucial step in the reconstruction
problem [3].

We want to understand the role of the charged operators for the position of
t(A) in B in the case of arbitrary depth, i.e., not given by the f ixpoints under
a Hopf algebra. One could again consider the C*-subalgebra of B generated
by the charged operators, and study its relation with the C*-algebra O, C A
generated by all elements satisfying (1.2) for some n, m.

But the latter algebra, considered as a subalgebra of B, is in general not
contained in the former. Tt is therefore desirable to identify a larger C*-algebra
0, , containing the charged operators as well as the invariants O,. In order to
keep this algebra minimal, we require that its image under the unique normal
conditional expectation pu: B — A gives exactly O,:

1(0,,,) =0, and 1(O,) CO,p . (1.3)

The general idea is to consider the map u: 0, , = O, as a “model action” for
the generalized symmetry underlying p: B — A.

This is the setting of our present analysis. We shall assume that ¢ and ¢
have finite index, and that both ¢” and 100", as n varies, generate only finitely
many irreducible subsectors (“rationality”). On the other hand, we drop the
assumption that ¢ is contained in tog (or ¢ < Zot), that is, possibly there are
no charged operators in the proper sense. By rationality, however, ¢ will be
contained in tog" for some n, so there will always be “higher” charged operators
for o™.

Besides, A need not be a subfactor of B, but rather + may be any irreducible
homomorphism between two properly infinite factors. Identifying A with its
image ¢(A) in B, the former situation will always be recovered.

With these data we associate two C*-algebras, namely O, C A which is
generated by all operators in A which intertwine powers of ¢ € End(A) as
before, and O, , C B which is generated by all operators in B which intertwine
powers of ¢ (for the image of A in B like in (1.1)).

In order to analyze these generalized Cuntz algebras, we study in both alge-
bras the linear subspace of intertwiners between idy = o° and ¢”, and identify
within this subspace a generating Hilbert space of isometries (“skeleton space”).
Surprisingly, in some exceptional cases the skeleton space is finite-dimensional
and has unit support. In these cases, it actually generates the entire general-
ized Cuntz algebra. In general, the skeleton space is infinite-dimensional, but
its support always converges to unity in a natural Hilbert norm.

These observations give rise to embeddings of ordinary Cuntz algebras (gen-
erated by the skeleton spaces) into generalized Cuntz algebras. While a priori
such embeddings are nothing peculiar, the ones due to the skeleton space are
of some relevance to the motivating duality problem, since the skeleton space
of O, , collects the algebraically independent “higher” charged operators.
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The Cuntz algebras generated by the skeleton spaces are in general dense
within the generalized Cuntz algebras (in an appropriate topology). In the
exceptional cases with skeleton spaces of finite dimension, there is equality,
that is, O, , may in fact turn out to be the ordinary Cuntz algebra generated
by its skeleton space.

As a byproduct, we give a simple characterization of the exceptional cases
in terms of fusion matrices.

There is a certain overlap with work done by Tzumi [5]. In particular, the
As-example described in Sect. 3 can be found also in that paper, although
considered from a different angle of view. We are not aware of a relation to
another recent generalization of Cuntz algebras due to Pimsner [9].

2. (GENERALIZED CUNTZ ALGEBRAS

The Cuntz algebras O were introduced in [2] as the C*-algebras generated
by a (possibly countably-infinite) number d > 2 of orthogonal isometries v;,
subject to the relation ), v;v7 = 1if d < co. They were shown to be simple
C*-algebras, depending only on d up to isomorphisms. We are here mainly
interested in concrete realizations of Cuntz algebras on a Hilbert space H.

2.1 Definition. Let H C B(H) be a Hilbert space of isometries, that is v*w is
a multiple of Iy for v,w € H. Then O(H) C B(H) is the C*-algebra generated
by the elements of H :

OH) = | |J H™HEH")| CBH).

n,m>0

The abelian case dim H = 1 is of no interest. If H is separable, or if 2 <
dim H < oo and H has unit support, then O(H) is isomorphic with the Cuntz
algebra Ogim gr, by identification of »; with an orthonormal basis of H. In
contrast, if H is finite-dimensional but of support < 1, then O(H) is known as
a Cuntz-Toeplitz algebra which has a nontrivial ideal generated by ", v;v; — 1.

It was observed in [3] in a new approach to duality for compact groups,
that O 1s not the appropriate object for duality theory. The authors rather
conceptualized the definition by viewing the generating Hilbert space H as an
object of the category of Hilbert spaces. This leads to a different generalization
to the infinite-dimensional case. Their general definition is

2.2 Definition. Let X be an object of a strict C* tensor category. The spaces of
arrows between tensor (= monoidal) powers of X are denoted by (X *", X*™).
These spaces are embedded into (X*"+1 X *™m+1) by taking the right tensor (=
monoidal) product with lx. Then

o*
Ox = U (Xxn’Xxm)

n,m>0

FEzxample 2.1: The category of Hilbert spaces is a strict C* tensor cate-
gory where the arrows (Hy, Hy) are given by the homomorphisms (Hq, H2) =
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Hom(Hy, H3). For a finite-dimensional Hilbert space H of unit support, O is
isomorphic with O(H) by the natural identification of (H®" H®™) C Oy with
H™(H™* C O(H):

OHEO(H)EOdimH R (21)

In contrast, for H infinite-dimensional, O(H) is naturally embedded as a proper
subalgebra into Q. The reason is, in a nutshell, that (H, H) C Oy is iso-
morphic with B(H), while its intersection HH* with O(H) contains only the
compact operators.

Ezample 2.2: The category of unitary representations D: G — B(H) of a
compact group (or Hopf algebra) G is a strict C* tensor category where the
arrows (Dj, Da) are the intertwiners Homeg (Hy, Hy). If D is a representation
of G on the finite-dimensional Hilbert space H of isometries, then (D®" D®™)
is naturally identified with the invariants under the induced action of G on
H™(H™)* C O(H), hence

Op = O(H)“ . (2.2)

Of particular interest for us is the case when X = g is a unital endomor-
phism of some properly infinite von Neumann factor A. The endomorphisms
of a properly infinite factor form a strict C* tensor category, where the arrows
are the intertwiners,

(01,00) ={T € A:Toi(a) = 02(a)T Va€ A} (01,00 € End(A)). (2.3)

The following definition is just a special case of Definition 2.2. We assume g to
be proper, that is, not an automorphism.

2.3 Definition. Let ¢ be a proper unital endomorphism of A. Then

o
0, = U (0", 0™) CA.

n,m>0

Since o maps (¢", ™) into (g"t1, o™*1), its action on A preserves the subalge-

bra O,.
Example 2.3: If p is inner, i.e., p(a) = >, viav] with isometries v; € A, then

0,=0(H), (2.4)

where H is the Hilbert space spanned by v; with inner product (v, w) = v*w. As
an endomorphism of O(H), ¢ is the canonical inner endomorphism associated
with H.

We now introduce a new generalized Cuntz algebra, denoted O, ,, which is
associated with an irreducible homomorphism ¢: A — B between two properly
infinite von Neumann factors A and B, and a unital endomorphism ¢ of A as
before. The intertwiners for homomorphisms between properly infinite factors
are given by

(01,02) ={T € B:Toyi(a) = o3(a)T Va € A} (o1,09 € Hom(A, B)) .
(2.5)
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2.4 Definition. Let: be an irreducible unital homomorphism of A into B, and
o a proper unital endomorphism of A. Then

o
0,,:= U (Lo0™, tog™) CB.

n,m>0

If p is a conditional expectation from B onto ¢(A), then g maps (100", tog™)
onto ¢(g", ™), hence

1O, ) = 1(Oy) . (2.6)

The special case B = A, + = idy yields O, , = O,, of course. Our original
motivation concerns the case A C B and ¢ the inclusion map A 5 a — a € B,
and ¢ an irreducible subsector of zot. Then equivalently ¢ < t00, that is, the
linear subspace of charged operators in B

HLVQ = (L,LOQ) = {1/) € B: ’l/)(l = Q(Cl)l/) Ya € A} (27)

is a non-trivial Hilbert space of isometries contained in O, ,.

Erample 2.4: Let A C B irreducible be the fixpoints under a Hopf algebra
G, and ¢ < tot. Then H, , has unit support in B and is stable under the action
of G and therefore carries a unitary representation D of G [7]. Furthermore, as
an endomorphism of A, ¢ is implemented within B by H, , C B,

ola) =Y Wi adf Vaeg A. (2.8)

One has
0,,=0(H,,)=0h,,=0q (2.9)

where d = d(¢) = dim(H, ,) = dim(D). The generalized Cuntz algebra O, C A
equals the fixpoints of O, , C B under the Hopf algebra action. In view of
Example 2.2, O, can be identified with Op:

0,=0,,NA=10,,=0p . (2.10)

0, may even be isomorphic with O, , itself, namely when ¢ = 7ot and D is the
regular representation [1,5,7]; but in general it cannot be expected to be of the
form O(H) for any Hilbert space H.

In general, the support of H, , is a nontrivial projection < llp, and O, , is not
generated by the Hilbert space H, ,. Because the dimensions of endomorphisms
are multiplicative and additive, and because dim(H, ,) equals the multiplicity
of ¢ within ¢op, one always has dim(H, ,) < d(g). But our assumptions even
admit the possibility H, , = {0}.

The previous examples are rather special illustrations. We emphasize that
they do not exhaust the classes of generalized Cuntz algebras of type O, and
0, ,.
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3. THE SKELETON SPACE

We consider O, , as defined in Section 2. (The special case B = A, ¢ = idy
covers also O,.) We assume ¢ and g to be of finite dimension, that is ¢(4) C B
and p(A) C A are subfactors of finite index.

For each n € Ny, O, , contains the finite-dimensional subspace h,, = (¢, t0o").
These are Hilbert spaces of isometries since hh, C (¢,¢) = C. Being subspaces
of B, h,, can be multiplied, and h,hpm C hpym. Accordingly, let bl denote the
span of all subspaces h,, - - - hy,, with 1 < n; < n and >, n; = n within h,, and
k, the orthogonal complement of k!, in h,. Trivially, hg = C, k1 = hy = H, ,.
Then

3.1 Lemma. z*y =0 for z € ky, y € km, provided m # n and n,m # 0.

Proof. Without loss of generality we may assume m > n. Then 2*y € hy—p. 1t
follows that z - *y € hphpm—n C h,, and by definition this space is orthogonal
to km, hence y*(z - 2*y) = (z*y)* (z*y) = 0. d

3.2 Definition. The skeleton space associated with O, , is the Hilbert space
K., =k, CO,,.
n

For B = A, + = ids, we call K, = K, , the skeleton space associated with
0,=0,,.

The obvious inclusions H, , C K, , C O(K, ,) C O,,, hold.
We introduce the power series

h(t) =Y dim(h,)t*  and  k(t) = dim(k,)t” (3.1)

n>0 n>0

as generating functionals for the dimensions of h,, and k,. By construction, h,
are generated by the subspaces ky, - - -ky, for all partitions > n; = n. These
are mutually orthogonal by Lemma 3.1. A little combinatorics therefore yields

3.3 Lemma. The generating functionals for the dimensions of h, and k, are

related by
1 1

) = k(t) =1 o)

Next, let us assume that the family of irreducible subsectors o; of 100" as
n varies, is finite (“rationality”). This property holds, e.g., if ¢«(A) C B is a
subfactor of finite depth and g is contained in some power of zo¢, that is, o
is a vertex in the even subgraph of the principal graph associated with the
subfactor. The assumption is also satisfied if B = A, + = id, and p is an object
of a category of endomorphisms with only finitely many irreducible objects,
e.g., the superselection sectors of a “rational” quantum field theory. We then
have a finite fusion matrix (N, ,);; given by the non-negative multiplicities of
o; within ¢j00, where o; range over all irreducible subsectors of tog™ and one
of the indices (i = ¢) corresponds to o, = ¢. Since dim(h,) = [(N,,)"].., one
obtains the formula for the generating functional

h(t)

h(t) = [(1 - tNL’g)_l]“ ) (32)
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from which k(%) can be obtained with the help of the Lemma 3.3. Explicitly, if
P is the projection matrix onto the s~direction and @ = 1 — P, one has

dim(k,) = [N, ,QN. o ... NopQN, ol = [N, o(QN, ,Q)" " ?N, ol . (3.3)
Clearly, dim(K, ,) = k(1).
It is well known that the largest eigenvalue of N, , is given by the dimension
d(g) of g, and the eigenvector is the Frobenius eigenvector F; = d(o;). Tt follows
that the radius of convergence of the generating functional A(t) is 1/d(g) < 1.

Ezample 3.1: Let ¢ € End(A) be implemented by a Hilbert space H € B.
Then hy = H, h, = H" = h}, and k1 = H, k, = {0} (n > 1), hence K, , = H.
This yields h(t) = (1 — dt)~! where d = dim(H) = d(p), and k(t) = dt. As
mentioned before, 0, , = O(K, ,) = O(H). Extending p to an inner endomor-
phism o of B, we have K, = K, , and O, = O, , = O(H).

Ezample 3.2: On the other hand, the algebra O, associated with ¢ € End(A)
from Example 3.1 will in general have a skeleton space of infinite dimension.
If, for instance, A are the fixpoints of B under a non-abelian symmetry group
G and g corresponds to a representation D of (G, then this space is determined
by the representation theory of G; namely a basis of k, C K, corresponds to
the independent G-invariant tensors within D®?. We display the generating
functional k(t) for G = S3 and g corresponding to the two-dimensional repre-
sentation: k() =2/(1 —t —?).

Ezample 3.3: Let 1(A) C B be a subfactor with principal graph A4. Then
tor = id4 @ o with d(g) = %ﬁ The relevant fusion rules are tog = + @ o where
a is an isomorphism of A with B, and aop =2 1. The above prescription yields

1
Cl—t—1t?
In other words, k1 and ky are one-dimensional, and all higher &, are trivial.

h(t) =[(1—tN, ) .. and k() =t+1t%.

Erample 3.4: Consider now O, with ¢ as in Example 3.3. In this case, the

relevant fusion rules are idog = ¢ and 0% = id @ g, yielding

1—t t?
= FR—) and k(t) =
This shows that K, is infinite-dimensional.

We can look at the Examples 3.3, 3.4 more explicitly. Namely, due to the
“Lee-Yang” fusion rules ¢? = id & p, there are isometries v; € (g, 0?) and
v € (id, ¢%) in A satisfying v1v} + vav3 = T4. Actually, this pair of isometries
generates O,, so O, is isomorphic with the ordinary Cuntz algebra O,. But
only v2 is contained in K,.

To study O, ,, one may choose a within its inner equivalence class such
that aog = ¢. Tt follows that 1¥; = «(v;) are isometries 1 € (¢,t00) and
Yo € (aog, og®) = (1,200%) a forteriori. This pair of isometries is a basis of
K, ,. Trivially, ¢(O,) is (properly) contained in O, ,, while we shall see below
that O, , is in fact generated by 5, that is O, , = a(O,). Thus we have the
proper inclusion

h(t) =[(1 _tNg)_l]oo

1(O0,) CO,, =0a(0,) . (3.4)
We see in these examples that the skeleton space is not an invariant under iso-

morphisms of generalized Cuntz algebras, but depends on the presentation in
terms of ¢ and p.
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4. DENSITY

We are concerned with the question how the skeleton space K, , and the
Cuntz algebra O(K, ,) generated by this Hilbert space of isometries are embed-
ded into O, ,. Before we consider the general case, we return to the Examples
3.3, 3.4 associated with the A4 inclusion, discussed in the previous section. It
exhibits the general mechanism in a most transparent manner.

We therefore assume, as in Example 3.3, « € Hom(A, B) with the fusion
rules Zot = id @ g, top = 1 P o, aop = t. Let X € (100”,100™) € O,,. Then
X is a linear combination of operators 7,7, and S.S} with isometries T, €
(4,000™), Tp € (1,200™) and S¢ € (e, 100™), Sq € (, Log"). Since (¢,100™) = hy,
and (o, 200™) C (@og, 100" T1) = hy 41, and since in turn h,, are generated by k;
and ks which span K, ,, we conclude that X is in the Cuntz algebra generated
by K, ,, that is, 0, , = O(K, ,) = Os.

The situation is different for the Example 3.4. The endomorphism g is the
same as before, but O, is generated by intertwiners between powers of g only. So
let X € (0", 0™) € O,. Similar as before, X is a linear combination of operators
R, R} and U.U; with isometries R, € (id, ¢™) = hm, Ry € (id, ") = h,, and
Uec € (9,0™),Uq € (0,0"). This time, the latter can not be directly identified
with elements of K,. But (g, ¢") is embedded into (0%, 0"*') and ¢? = id @ p
is decomposed with the pair of isometries v1 and vs. Thus we may write

U U, = UevavsU] + Upgnvi U (4.1)

where Ucvy € hmy1,Uqva € hpy1. Hence the first term in the decomposition
is in the Cuntz algebra O(K,). The second term is of the form ﬁcﬁ; with
U, € (0, 0™*1), Uy € (0,07 %), and can be treated iteratively like U.U} before.
Thus we end up with a decomposition

R
UU; = (Uetfva) (Uavfva)* + (Uerf™) (Ugvi )" (4.2)

r=0

where the terms in the sum are in hm+,~+1h;+r+1, hence are generated by K,.
We shall show that the remainder term converges to zero in an appropriate
topology (but not in the operator norm), as R increases.

In order to do so, we recall some definitions pertaining to the general case.
For ¢ a unital homomorphism of A into B of finite dimension, the standard
left-inverse ¢, is the positive unital map ¢~ 'oE, where E, is the minimal
conditional expectation of B onto its subfactor o(A). Explicitly, ¢, is of the
form ¢,(z) = R*6(z)R where & is a conjugate endomorphism of ¢ and R
is an isometry in (ida,&0). By construction, ¢, satisfies ¢, (o (z)yo(z)) =
zds(y)z and in particular ¢,o0 = id4. Standard left-inverses are related by
the “intertwining property”

d(01)¢o, (2T) = d(02)ds, (Tx) if T € (01,09) . (4.3)
We consider the state on O, given by

¢, = lim ¢) . (4.4)

N—oo
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¢, maps (0", 0™) into (¢"~1, 0™~ ') as long as n,m > 0. Hence, its repeated
application takes (¢”, ™) eventually to the scalars (id4,id4) = C where further
application of ¢, is trivial. On the other hand, if n # m, and without loss of
generality n < m, then (¢”, ¢™) is mapped by ¢, to the Hilbert space hy—p.
This space is mapped by ¢, onto itself, and it can be shown that the restriction
of ¢, to hy (k > 0) is a bounded map with norm < d(g)~" < 1. Hence the limit
¢, = limy_y00 ¢V stabilizes on the homogeneous part of O, and converges to
zero on the inhomogeneous part of O,. In other words, ¢, is a state on O, which
is invariant under the automorphism group on O, defined by a;(z) = giln=—mty
if z € (¢", 0™). The intertwining property (4.3) implies

polry) =d(0)" " "po(yx)  for  ze (" 0), (4.5)

that is, ¢, is actually a KMS state for this automorphism group with temper-
ature 27/ Ind(p).
The intertwining property allows to compute the expectation values

d(r)
d(e)”

whenever T' € (7, ¢") is an isometry and 7 < ¢" is an irreducible subsector of
n

o".
Similarly, we consider the state on O, , given by

Po(TT") = (4.6)

Pro = Poolt (4.7)

where the unique conditional expectation g of B onto A coincides with the
left-inverse ¢,. Since p maps (0", og™) onto (0", ¢”), it maps O, , onto O,.
Similarly as before, one has

d(o)
d(e)d(e)"

whenever V € (o, 100") is an isometry and o < top" is an irreducible subsector
of 1og™.

The faithful state ¢, , gives rise, by the GNS construction, to the Hilbert
space H, , which is the closure of the pre Hilbert space O, ,. Specializing to
B = A, 1 = id4 as before, the state ¢, gives rise to the GNS Hilbert space
H, D O,.

Let us now return to our Example 3.4. We were decomposing an element
of O, into a part generated by the skeleton space K,, and a remainder term

o(VVT) = (4.8)

(UCUF‘H ) (Udvf‘l'l )*. This term converges to zero when considered as an element
of the GNS Hilbert space H,, namely

1T+ UaofH) U2, = o [(Ua T+ U+ (oo ) (Uanf ™))
= pl(Uar*) (Uarf+)'] (4.9)
= d(g) """

by (4.6). It is, however, crucial that this is no convergence in the C*-algebra
0,, since every remainder term is a partial isometry, and hence has unit norm.
The example already illustrates the general scheme. In fact, we have
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4.1 Lemma. Let E, =" wvav}, be the support projection of the Hilbert space
ky, where {v,} is an orthonormal basis of k, C K, ,. Then the expectation value

. 0>, En) converges to 1.

Proof. Since v; € (t,t00”), one has ¢, ,(viv}) = d(g)™" due to (4.8), and
@, 0(Ern) = dim(k,)d(g)~". It follows that the sum ) ¢, ,(E,) converges
to the value of the generating functional k(¢) at ¢ = 1/d(g) while to evaluate
k(t) at ¢t below 1/d(g) amounts to suppress the higher contributions to the
sum. But since h(t) diverges as t ' 1/d(p), we conclude by Lemma 3.3 that
k(1 fd(0) = 1. 0

4.2 Corollary. " F, converges to g within the Hilbert space H, ,. If K, ,
is finite-dimensional, then it has unit support, Y E, = lp.

Proof. Obvious, since F),, are orthogonal projections by Lemma 3.1. d

4.3 Corollary. dim(H, ,) < d(g) < dim(K, ,). Equality in either of these
bounds tmplies equality in the other one, and holds if and only if either of the
following 1is true:

() K, , =k = H,,.

(i) H, , has unit support.

(iil) o is tmplemented by K, ,.

(iv) o is implemented by H, ,.

Proof. The first bound holds because dim(H, ,) is the multiplicity of + within
tog, with equality if and only if (iv) is true. The second bound holds since every
basis isometry v, € ky,, contributes at most 1/d(g) to the sum Zn,a ©1,0(Vat})
= 1, with equality if and only if each contribution is exactly 1/d(g), which in
turn is equivalent to (i).

Equivalence of (1)—(iv) is seen as follows: if K, , = H, , then it is finite-dimen-
sional, hence it has unit support, hence K, , = H, , implements g. Conversely,
if H,, implements g, then its support must be unity, and if H,, has unit
support, then K, , cannot be larger than H,,. If K,, implements g, then
K, , C (t,t09) = H, ,. In either case, K, , = H, , follows. O

In a similar way as Lemma 4.1, one obtains

4.4 Lemma. FEvery element of (¢00", 100™) can be approzimated (in the Hilbert
norm of H, ,) by sums of operators in hpyy by,

Proof. Every z € (100", t0¢™) is a sum of operators T, and S.S7 with isome-
tries Ty, € (¢,00™), Ty € (¢, t00") and S € (0j,t00™),S4 € (0j,t00") where
o; ranges over all irreducible subsectors contained in t09”, n € N, which are
different from ¢. The terms T, T} are of the desired form. The latter are treated
as follows. (0;,100™) is a subspace of (000,200 T!). According to the fusion
rules 600 = (N, ,),jt @ Zi#L(NLyQ)ijo-i we may rewrite

SeSi =Y SewawlSi+ Y Sevi o oS (4.10)

i,

where {wq} is an orthonormal basis of (1,0;00) and {v; o} are orthonormal
bases of (0, 0500). The former terms are in hy,q1hy 1, while the latter are
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of the form gcgz with isometries S. € (O’Z',Logm+1),§d € (04, t00™T1) (i # 1).
Repeating this step R times, we obtain a sum of terms in hp,4- b}, (r < R)
and a remainder ri of the form

rr = S, (Zvl...vRv}}...vI) S; (4.11)

where v, = v;,_ o, and the sum extends over all i, # ¢ and over orthonormal
bases {v;, a,} of (0i,,04,_,00). The Hilbert norm of the remainder is, by (4.8),

* * * Qi dl
|7 Rl iL,g =¢.o(rRTR) = E%,g [Sqvi...vRvE...v]S7] = E d(g)ﬁ :

(4.12)
The number of terms in this sum with fixed sector ig = ¢ equals (Nr}zd)ij where
Nied = @N, Q@ is the fusion matrix with the line and column corresponding to
¢ deleted. This yields the estimate

||7°R||ZL’Q < const. - <%> ) (4.13)

The norm of the reduced fusion matrix is strictly smaller than the norm ||N, ,||
= d(p) of the full fusion matrix, because the Frobenius eigenvector has a nonzero
component in the i-direction. Tt follows that (4.13) converges to zero as R
increases. O

4.5 Corollary. The following statements are equivalent.

(1) O, , is generated by its skeleton space K, ,, that is O, , = O(K, ).

(ii) K, , is finite-dimensional.

(iii) The “reduced fusion matriz” Nyeg = QN, ,Q (cf. Eq. (3.3)) is nilpotent.

Proof. For the equivalence (i) < (iii), consider the expansion discussed in the
proof to Lemma 4.4. Since every term in the remainder rg is a partial isometry
of norm 1, the expansion converges within O, ,, that is in norm, if and only if
the remainder vanishes for sufficiently large R. This is equivalent to nilpotency
of Npeq. The equivalence (ii) < (iii) is obvious from Eq. (3.3). O

5. DISCUSSION

We have introduced a new class of generalized Cuntz algebras O, , motivated
by the analysis of charged operators, that is, operators in an ambient algebra B
which intertwine a given endomorphism g of a subalgebra A with the identity
ida.

We have studied the embedding of “higher” charged operators, that is, inter-
twiners in B between the identity and powers of ¢ € End(A), into the associated
generalized Cuntz algebra. An interesting invariant object turns out to be the
“skeleton space” K, , within O, ,. In the fixpoint example, the skeleton space
of O,,, is just the Hilbert space H, , of charged operators which implements
¢ and carries a representation of the Hopf algebra G, while the skeleton space
of O, collects a system of algebraically independent G-invariants within ten-
sor powers of the representation on H, ,. In this sense, we are setting up a
generalized theory of invariants.
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The skeleton space gives rise to an embedding O(K, ,) C O,,. The em-
bedding of ordinary Cuntz algebras into generalized ones itself is not so much
surprising in view of the elementary fact that ordinary Cuntz algebras generated
by d isometries can be embedded into Cuntz algebras generated by less than
d isometries (e.g., if O is generated by v; and vq, then vjve (r =0,...d — 2)
and v‘li_l span a Hilbert space of dimension d with unit support within O3).
But the simple criterion for equality of O, , with O(K, ,) in terms of the fusion
rules (Corollary 4.5) seems interesting, possibly leading to a classification of
these exceptional cases. The (rather weak) convergence of the support of the
Hilbert space K, , in the general case may be irrelevant for the properly C*
aspects, but in view of the motivating problem in which the states ¢, , and
®, are natural tools, we expect it to be of interest for the study of generalized
symmetry.

The criterion whether O, , is an ordinary Cuntz algebra distinguishes only
the case when the generating Hilbert space coincides with the skeleton space
K, ,. The Example 3.4 shows that possibly O, , = O(H) with some H # K, ,.
In that example, K, , is infinite-dimensional while dim(H) = 2. The skeleton
space therefore does not provide a characterization of the full isomorphism class
of the new generalized Cuntz algebras.

However, the skeleton spaces and the generating functionals k(t), as well as
the relative position of ¢(0,) in O, , are invariants under inner conjugations
and outer transformations (A, B,t,0) — (A,B,ﬂoma_l,aogoa_l) with a €
Iso(A, A) and 3 € Iso(B, B) These data, as ¢ ranges over the even vertices of
the principal graph determined by ¢, therefore constitute invariant information
about the underlying paragroup.
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