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The general theory of superselection sectors is shown to provide almost all the struc-
ture observed in two-dimensional conformal field theories. Its application to two-
dimensional conformally covariant and three-dimensional Poincaré covariant theories
yields a general spin-statistics connection previously encountered in more special sit-
uations. CPT symmetry can be shown also in the absence of local (anti-) commutation
relations, if the braid group statistics is expressed in the form of an exchange algebra.

1. Introduction

Conformal field theories in two dimensions exhibit a rich spectrum of superse-
lection sectors which gives rise to braid group representations, link invariants, and
fusion categories of quantum symmetries. Actually, most of this structure does not
really depend on conformal covariance but only on locality, and occurs in generic
quantum field theories in two and three dimensions. We dedicate this article to
Rudolf Haag on the occasion of his 70th birthday, who always emphasized the cen-
tral role of the principle of Locality in quantum field theory [1, 2].

In [3] we started a general analysis of quantum field theories in low-dimensional
space-time by adapting the Doplicher-Haag-Roberts (DHR) theory [4] of superse-
lection sectors and statistics. For further aspects of this approach we recommend
Rudolf Haag’s recent book [2]. For related work in low dimensions see Buchholz et
al. [5], Longo [6], and Fréhlich et al. [7], and contributions of the same authors to
[8], where also reviews by Roberts and by Kastler et al. can be found.

The new feature of the DHR theory in low-dimensional space-time is braid group
statistics: there are two distinct statistics operators, one the inverse of the other,
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related to the fact that the causal complement of a bounded space-time region has
two connected components. The statistics operator as defined in [4] is a topological
invariant w.r.t. the choice of a pair of causally disjoint auxiliary regions, as long as
such pairs can be continuously deformed into each other while remaining at relative
space-like separation. Therefore, braid group statistics arises for DHR superselec-
tion charges localized in two-dimensional double cones (diamonds) as well as in one-
dimensional intervals of the real line (light-cone). It also arises in three-dimensional
theories with charges localized along narrow cones extending to space-like infinity
(“gauge strings”) since in this situation the cones of localization are restricted to
avoid the causal shadow of some space-like reference direction [9]. This type of local-
ization, fitting the heuristic Mandelstam formula for charge-carrying fields in gauge
theories, has been shown to be the most general situation with massive particles in
at least three dimensions [9]. The most general particle sectors in two-dimensional
massive theories, however, are solitons for which a general theory of sectors is not
yet available (in typical examples, the structure has been investigated by Frohlich
[10], and a proposal for a general theory has been made in [11]).

These various algebraic localization concepts pertaining to relativistic quantum
field theories have their (less precisely defined) counterparts in localized states of
condensed matter physics. It is generally expected that they help to explain a class
of “new” low-dimensional phenomena including the fractional Hall effect.

In [3] we showed how unitary braid group representations and Markov traces
arise from the DHR theory, thereby reproducing the Jones-Ocneanu-Wenzl repre-
sentations and the associated link invariants. We introduced a general formalism
to describe charged operators which interpolate among different superselection sec-
tors: the “reduced field bundle” F..q which is obtained from the “field bundle”
(the crossed product of the algebra of observables by the semi-group of DHR endo-
morphisms [4]) by eliminating the redundancy. It was identified with an abstract
version of the “exchange algebra” which has been found by two of us [12] as the
algebraic structure underlying the conformal blocks [13] and their monodromy and
fusion behaviour {14, 15].

The reduced field bundle Freq (see Sec. 3) is an algebra densely spanned by op-
erators F' = F(e, A), linear in the local degree of freedom A € A (the algebra
of observables), and with a multi-index e referring to the charge ¢(e) carried by
F as well as to the source sector s(e) and the range sector r(e) between which F
interpolates according to the “fusion rules”. To be precise, for every superselection
sector (equivalence class of irreducible DHR representations) [a] with finite statis-
tics, one picks a representative DHR endomorphism p, inducing a representation
of the observable algebra A on a copy Ho = (@, Ho) of the vacuum Hilbert space
by

7o(A) - (a, ¥) := (a, 7o(pa(A)) - ¥). (1.1)

For a given representative p and every pair of representatives p,, ps such that
[ps] arises as a subrepresentation of [p4p], there is an orthonormal basis {T.} of
the corresponding finite-dimensional space of local intertwiners : pg — pgp. The
operators F'(e, A) carrying charge [p] are defined by their action on H, (the source
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sector) with images in s (the range sector):
F(e, A) - (a, ¥) := (B, 7o(T¢ pa(4)) - ¥). (1.2)

Operators of trivial charge (c(e) = [0}, 7. = 1) coincide with the observables (1.1).
F = F(e, A) is said to be localized in some space-time region O (i.e. F' € Freq(D))
iff it commutes with all observables localized in the causal complement of O:

ng(B)F(e, A) = F(e, A)yma(B) VY B € A(O'). (1.3)
This condition is equivalent to the existence of a local unitary U such that
UAe€ A(O) and Adyopislocalized in O. (1.4)

The notion of localization does not depend on the source and range sectors.

The algebraic relations satisfied by these reduced field bundle elements are ex-
actly the bounded operator analogue of the exchange algebra introduced in [12] in
the context of conformal quantum field theory on the light-cone, and it is the first
intention of this article to deeper establish this correspondence. In particular, we
shall prove the Spin-Statistics theorem, relating the statistics phase « of the DHR
theory to the appropriate spin quantum number of the outer (space-time) symmetry
group (the light-cone scaling dimension in conformal quantum field theory), and de-
rive the CPT theorem for charged fields, connecting DHR charge conjugation with
space-time inversion.

Therefore, we shall concentrate on sectors covariant w.r.t. appropriate (Poincaré,
conformal) space-time symmetry groups. In a recent article [16] Borchers showed
that in the vacuum sector the Tomita-Takesaki modular theory associates with
a positive-energy representation of the translation group a representation of the
light-cone dilatations resp. of the Poincaré group in two dimensions, as well as
an abstract CPT operator, although the geometric actions of these groups on the
local net cannot always be guaranteed. As a partial converse of the result [17]
that covariant sectors with an isolated mass-shell have finite statistics, Guido and
Longo [18] have established that —under some regularity assumptions about the
local net —a DHR sector with finite statistics is Poincaré covariant, provided the
vacuum sector is. The same statement holds as well for Mdbius invariance on the
compactified chiral light-cone. In our presentation below we shall treat the selection
criterion of finite statistics independently of the covariance assumption. The results
of Sec. 3 rely only on finite statistics, while specific covariance assumptions about
the vacuum sector and the charged sectors enter only in the later sections.

In Sec. 2 we shall briefly review the results of the DHR theory of superselection
sectors with braid group statistics. In Sec. 3 we shall derive consequences of the
DHR theory for the algebraic structure of the reduced field bundle, in particular
as the operator adjoint and the charge conjugation operation are concerned. These
results appear as a “pre-existing covariance” in the general DHR theory, presum-
ably related to the results of Borchers [16] and Guido and Longo [18]. In Sec. 4
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we review the basic properties of the space-time covariant reduced field bundle.
Up to this point, space-time is assumed to be a non-compact flat manifold with
a definite notion of left and right causal complement. In Sec. 5 we turn to the
theory in non-trivial topology, in particular the compactified light-cone S which
supports the chiral observables in two-dimensional conformal quantum field theory.
In such situations, the algebra of local observables must be extended to include
certain global operators. We construct this “universal algebra” Ay, and derive
the existence of DHR endomorphisms of Aniv. The center of the universal alge-
bra contains “charge operators” which in typical cases completely characterize the
sector in which they are evaluated. The underlying algebra is an abstract Verlinde
algebra [19], and the corresponding “character table” is Verlinde’s matrix S [20, 7c].
The vacuum representation my of the universal algebra is no longer faithful, and
care has to be taken about pre-images of my. As a consequence, the reduced field
bundle is found to “live” on a covering space with specific periodicity properties.
The latter are specified by both the (conformal) spin and the statistics monodromy:
their coincidence gives rise to a weak Spin-Statistics theorem, which in turn allows
to interprete the charge quantum numbers showing up in the structure of the center
of Auniv in terms of the spin quantum numbers associated with the covariant sec-
tors. These results hold on the conformal light-cone as well as in 2 + 1-dimensional
theories with string-like charges. For further analysis including the strong Spin-
Statistics theorem we restrict to the conformal situation, although we think that
generalizations are possible. Provided the scaling limit is sufficiently well-behaved,
we can control complex scale transformations z — e'#z on the original light-cone,
and in particular the space-time inversion z — —z. This, together with the alge-
braic charge conjugation structure of the reduced field bundle, leads us to the CPT
theorem for charged sectors with braid group statistics.

Some of these results have been announced earlier (e.g. [20,21]). The (weak
version of the) Spin-Statistics theorem was also found by Frohlich et al. [7] in the
three-dimensional context. Our main interest lies in the study of non-abelian (“plek-
tonic”) braid group statistics going along with branching in the composition of sec-
tors. The much simpler abelian (“anyonic”) case which seems to be the only one
accessible by Lagrangian methods is, however, always included.

We include two appendices, one containing a collection of useful formulae rel-
evant for the charge conjugation structure of the reduced field bundle, the other
one describing the construction of topological invariants from the superselection
structure data of a local quantum field theory.

The condensed matter counterpart of relativistic space-time characteristics such
as the spin are the critical exponents. Under this aspect, our above-mentioned
findings about the center of the universal algebra of observables should be seen in
the light of Kadanoff’s et al [22] understanding (by the Coulomb gas method) of
critical exponents as being related to field theoretical charge quantum numbers.
Charge quantum numbers related to the covering of the M&bius group have also
been observed before and exploited for a conformal decomposition theory in pure
quantum field theoretical studies [23]. But a rich class of models illustrating the
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non-triviality of these early concepts and triggering the modern developments in
low-dimensional quantum field theory was only found much later [13].

We do not address the question of “quantum symmetry” in the present article,
i.e. the analogue of the result of Doplicher and Roberts that DHR. superselection
sectors with permutation group statistics are always due to a global gauge symmetry
in a field algebra of bosonic or fermionic fields [24] (see, however, [25,26,27] for
approaches in the algebraic framework). The reduced field bundle is a substitute
for the gauge covariant field algebra when the symmetry is not known. Since the
former is a faithful description of all physics observable in charged states, it is only
natural that the deep physical properties of charged fields can be derived as well in
our framework without explicit reference to gauge covariance.

Actually, it is known that the reduced field bundle framework for gauge covari-
ant theories is essentially equivalent to the much older multiplicity-free description
introduced by Driihl et al. [28], who succeeded to construct Green’s parafields [29]
(generalized permutation group statistics) from gauge tensor fields with the help of
a Klein transformation.

2. Preliminaries from the DHR Theory

The general setting of the DHR theory is the local net of observables which
assigns to every bounded space-time region (0 the von Neumann algebra A(O) of
local observables localized in O. A is the C*-algebra generated by all A(O). The
vacuum representation wo : A — B(H,) is faithful, and Haag duality is assumed for
double-cones O (intersections of a forward and a backward light-cone), i.e. every
operator in B(Hp) which commutes with the algebra of the causal complement
70(A(Q’)) is the image of a local operator in A(Q). A physically relevant class of
Hilbert space positive energy representations is obtained by the composition mgop of
the vacuum representation g : A — B(H,) with an endomorphism p : A — A. The
latter is localized and transportable, i.e. it acts trivially on the algebra of the causal
complement ¢ of a given double-cone O (then p is said to be localized in O), and
there are unitarily equivalent endomorphisms localized in any other bounded region.
The physically most relevant endomorphisms have “finite statistics”. By Longo’s
result [6], this amounts to saying that the inclusion of factors p(.A(O)) C A(O)
has finite (Jones) index. The composition of DHR endomorphisms gives rise to a
“fusion category” of superselection sectors. We recall some basic notions and results
from [3,4].

2.1. Intertwiners

Two representations mgo and mop possess equivalent subrepresentations iff there
is an intertwining operator V : mop — %90 in B(Hy), i.e. V - mop(A) = moo(A) - V
for all A € A. The equivalent subrepresentations are given by the source and range
projections of V. By Haag duality, V is the image in m¢ of a local intertwiner T :
p — o in A satisfying

Tp(A) = o(A)T VAEA. (2.1)
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The space of self-intertwiners: p — p is the commutant p(A)’ of p(A) and, by Schur’s
Lemma, equals the scalars C iff p is irreducible. Therefore, when p is irreducible,
the linear space of intertwiners: p — o is a Hilbert space within the algebra of local
observables with the inner product (73, T3) := 17T, € C.

2.2. Statistics

For every pair of DHR endomorphisms there is a unitary local intertwiner e(p, o)
: po — op, the statistics operator. The collection of statistics operators is uniquely
determined by the coherence with local intertwiners and among themselves

E(dl, Uz)dl(Tg)Tl = Tgpg(T1)€(p1, pz) v T, Lpi — 0, (22)
e(prp2, @) = €(p1, o)pr(e(p2, @), €(p, 0102) = 01(e(p, 02))e(p, 01),(2.3)

together with the initial conditions

e(p,id) =e(id, p) =1, (2.4)
e(p,o)=1  whenever ¢ < p, (2.5)

where “o < p” means that ¢ is localized in a region in the left space-like complement
of another region where p is localized. (Note that id is localized in every region, and
therefore (2.4) is actually contained in (2.5).) Imposing the opposite initial condi-
tion: trivialization for p < o, would give rise to the opposite statistics operators
e(o, p)* instead. In high-dimensional situations without an invariant distinction
between left and right, permutation group statistics follows: £(p, o) = ¢(o, p)*.

As a consequence of (2.2 + 3), the statistics operators satisfy the braid relation

p3(e(p1, p2))e(pr, p3)pr(e(pz, p3)) = €(pa, p3)p2(e(py, p3))e(pr, p2).  (2.6)

In particular, by assigning the local operators p'~!(g(p, p)) to the standard gener-
ators o; of the braid group B,,, one obtains a unitary representation of the braid
group in A, called the statistics of the endomorphism p.

2.3. Conjugates

A conjugate of a DHR endomorphism p is a DHR endomorphism p such that pp
contains the vacuum sector. More precisely, there is an isometric intertwiner R : id
— pp which induces a standard left-inverse ¢ of p

¢(4) = R"p(A)R (2.7)

with finite statistics. Recall that a left-inverse is a normalized positive linear map
satisfying the relation ¢(p(A)B p(C)) = A¢(B)C. It is called regular if it is of the
form (2.7), and standard if in addition the statistics parameter A, := ¢(e(p, p)) €
p(A) is a non-vanishing multiple of a unitary. A sufficient condition for the exis-
tence of a standard left-inverse and therefore of a conjugate is that there is some
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left-inverse with statistics parameter # 0 (“finite statistics”) and p is translation
covariant with the spectrum condition. The standard left-inverse is unique, and the
conjugate endomorphism p is unique up to unitary equivalence and depends only
on the equivalence class of p. p is conjugate to 5. The standard left-inverse is a
trace on the commutant of p(A), and ¢, is the standard left-inverse of p,ps.

The inverse modulus of A, is called the statistical dimension d, = d(p) > 1 of p.
For irreducible endomorphisms, the scalar A\, = «,/d, defines the statistics phase
K, = k(p). Both d and & are class invariant quantum numbers, and

d(p) =d(p),  «(p)=«(p). (2.8)
For reducible endomorphisms, the statistics parameter has the form
Ao =d;' ) Kok, (2.9)

where E, € p(A)’ are the projections onto the equivalence classes [a] of irreducible
subrepresentations of g o p.

The statistical dimension is the square root of the minimal index [6] of the inclu-
sion p(A(Q)) C .A(O) which coincides with the Jones index in the irreducible case.
It is multiplicative and additive:

(a) d(p1p2) = d(p1)d(pz)  (b) d(p) = N%d(pa), (2.10)

where N% are the multiplicities of the sectors [a] within 75 0 p. As a consequence,
every product of irreducible endomorphisms from the sectors [a], [8] with finite
statistics is finitely reducible into sectors [y] with finite statistics with multiplicities

Nly=N},=N%5=Ni=Nl;, Nop= N =0bas. (2.11)

3. The Reduced Field Bundle

We shall from now on fix a set Aeq of irreducible representative endomorphisms
with finite statistics po € [@], one per superselection sector, with id € [0] as repre-
sentative of the vacuum sector. We also fix orthonormal bases {T.} for all the N ppa_
dimensional intertwiner spaces: pg — pop. We call [a] = s(e), [p] = c(e), (8] = r(e)
the source, charge, and range of the corresponding fusion channel, and say e to be of
type (a, p, B). Although, as a rule, we shall distinguish by our notation the physical
role of the source and range sectors and their representatives (p, € [a], pa € [@]
etc.) from charge quantum numbers (p; € [p;], p € [p]), the endomorphisms always
are taken from the same set Areg. Wz have the orthonormality and completeness
relations

Ty =6, » T.T:=1, (3.1)
€

for e and f with common source and charge, but free range (to be summed over in
the completeness relation). We choose T, = 1 if e has trivial charge or source, and
call T, = R, = R; if the range is trivial, i.e. charge and source are conjugates.
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For later use we introduce the complex phases associated with p € Area:
Xp '=d, p(R3)R, = dp - R3p(R,) = K, - R3e(p, p)R, = xp=x,- (3.2)

The phases x are to some extent invariants of the sector, but they also depend on
the phases of the intertwiners R, relative to R;. For p not self-conjugate, these
may be chosen such that x, = 1. For self-conjugate sectors, x, is an intrinsic sign
distinguishing “real” (4) from “pseudoreal” (—) sectors.

We denote by Hyeq the direct sum of Hilbert spaces My, po € Areq. The reduced
field bundle Freq C B(Mreq) is now defined by (1.2). The reader should be aware
that, from the definitions (1.1-3), the choice of the representatives p, € [a] is
completely immaterial up to unitary equivalence. It amounts to a global section
through the field bundle defined in [4]. In fact, choosing p, = Advq4 © po, One
naturally identifies H, with M/, by 7o(Vy) : Ho — H,, and replaces the basis T, by
T, = Vapa(V,)T.V;. Then F'(e, V,A) is unitarily equivalent to F(e, A). For fixed
choice Areq, F(e, A) transform contravariantly under a change of the basis {T.}.

Before we present the algebraic properties of Freq, let us comment on the under-
lying “path space” structure. It is clear from the definition (1.2) that elements
F(e2, A2) and F(e1, A1) of the reduced field bundie can be multiplied only if
s(ez) = r(e;); otherwise the product is set to zero. Therefore, a multiple product
F(en, Ag)...F(e1, Ay) corresponds to a chain of fusion channels? 7 =€, 0...0¢;
such that s(e; 4 1) = r(e;) but with free charges c(e;) (those of the field bundle oper-
ators). We refer to such a chain as a “path”. The repeated evaluation of (1.2) gives
rise to “path intertwiners” T, = T,, ...T., : pg, — Pa,P1---Pn Where p; € c(e;)
etc. as in Sec. 1. Since T, provide orthonormal bases of the intertwiner spaces:
ps — pap; T, as above with ay, p;, 8, fixed but o; 41 = B; free, provide orthonor-
mal bases for the intertwiner spaces: pg, — pa,p1-..Pn- Moreover, the “string
intertwiners” T,T¢ =T, ... 1., Ty, ... Ty, with s(e1) = [o], e(ei) = [pi], e(f5) =
[pi], s(f1) = [v] fixed but all other sectors including r(e,) = r(fm) free, provide a
basis of the intertwiner spaces: pyp}...ph — pap1...pn. Therefore, e.g., for any
intertwiner Ty : p — p;p2 and statistics operator e(pz, p1) : p2p1 — p1p2 there are
unique expansions

pa(Ty) =) D -T.,T., T,
e;, e

palep2, p1)) = 3 RF2H(+) - Te, Te, T}, T,
eiyfl

(3.3)

with unitary matrices D and R(+) in path space. The corresponding matrix for the
opposite statistics operator (p;, p2)* is called R;f:;;(—) The coefficients D and R
play exactly the role of recoupling (Wigner-Racah, 65) symbols for the associativ-
ity resp. crossing symmetry of tensor products of representations of groups (Hopf

algebras): e.g., T,,T., above corresponds to the successive reduction (pqpy)p2 —

2The present notation ez o e1, opposite to [3], conforms with the composition of arrows and maps,
and reflects the interpolation of reduced field bundle operators.
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ppp2 — pv, While po(T})T. corresponds to pa(p1p2) — pap — py. The transi-
tion matrix between these bases of intertwiners is the matrix D. Similarly, the
R-matrices relate the successive reductions p,p1p2 — paps — py and paprp1 —
PsP1 — P+, Where pypy and pap; are intertwined by the statistics operator. Observe
that in both cases there are six sectors involved (“65”). In fact, the role of these co-
efficients in the reduced field bundle (see below) is precisely that of 6j-symbols of an
underlying quantum symmetry: for sectors arising from a global gauge symmetry,
this role can be easily established by the results of [24].

In view of these remarks, it is clear that also compositions of intertwiners such
as those occur in (2.2), (2.3), and (2.6) have expansions in terms of path and string
intertwiners. The composition of intertwiners corresponds to the matrix product
in path space. In particular, the mentioned algebraic relations give rise to matrix
identities among the structure constants R, D as follows. In (2.2) choose p; = o
and p; = py from A,eq, 02 = paps a product of two endomorphisms of Apeq, 77 =1
trivial and T, = T, some basis intertwiner: p, — popg. Use (2.3) to express the
statistics operator with the product p,ps in terms of statistics operators of the
factors in Ayeq. This yields

pa(e(p1, ps)) - €(p1, pa) - p1(Te) = Te - €(p1, py) -

Apply some p € Areq to this, and write po(X) = E_fopg(X)T; in the resulting
equation, such that it becomes a relation among intertwiners of the type (3.3).
Inserting their expansions (3.3) yields a matrix relation of the form RRD = DR,
the Moore-Seiberg “pentagon” identity known from conformal quantum field theory
[15]. The same manipulations on the braid relation (2.6) with all p; from Areq yield
a matrix relation of the form RRR = RRR, the braid relation on path space [12, 14].
Playing the same game on the expansion (3.3) p(T)T = £D-TT yields an identity of
the form DD = DDD, known as Racah-Elliot relation in the context of (quantum)
groups and tensor categories. It is often very useful and suggestive to display the
algebraic intertwiner relations diagrammatically [25, 7], similar to the representation
of the polynomial identities in [15], and to the diagrammatical tensor calculus of
[30].

The structure constants R and D play a prominent role in the reduced field
bundle. For the operators defined by (1.2) with the notion of localization (1.4) one
easily derives

Proposition 3.1. With notations as in (3.3):

F(eg, Ag) - F(e1, A) = Y D2t - Fle, Tj pi(A2) A1), (3.4)
I,e

and whenever Fy is localized tn the right/left causal complement of F;,

Flez, A2) - F(er, Ay)= Y RYS(+/=) F(fi, A1) - F(fz, A2). (3.5)
f1of2
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These are the characteristic exchange algebra relations with expansion coeflicients
indexed by appropriate fusion paths, replacing the labelling by representations and
representation indices of conventional, say gauge covariant, fields. In (3.4) the
charges contributing to the r.h.s. are precisely those arising as subsectors of [p;ps]
(i.e. the reduced field bundle respects the fusion rules), and in (3.5) the charges of
the involved operators are just exchanged, as indicated by the subscripts i = 1, 2.
The structure (3.4), as an abstract version of the “reduced matrix elements” of
tensor operators in the Wigner-Eckart theorem of quantum mechanics, hints at the
(in the case of braid group statistics unknown) underlying quantum symmetry.

Apart from the polynomial identities mentioned above, there is an inversion
formula for the R-matrices.

Proposition 3.2. Let s(e1) = s(f2) = a, r(e2) = r(f1) = v, s(e2) = r(e1) =
B, s(f1) = r(f2) = 8. Then (cf. also [7)
REi(0) = B RO (36)

This follows from the following lemma which will also be of relevance later for
a weak version of the Spin-Statistics theorem. The same inversion formula was
found in conformal exchange algebras as a consistency condition w.r.t. full Mobius
covariance (12]. Its validity in the general DHR framework is another instance of
pre-existing space-time covariance structures in the DHR theory.

Lemma 3.3. The basis intertwiners T, : py, — paps diagonalize the monodromy
(cf. also [7]):
K
e(pg; Pa)E(Pas pp)T. = —1.T,. 3.7
KakKpg

Basis intertwiners of common source and range are orthogonal also with respect to
the left-inverse of the source:

$a(T.T}) = ddd bey (3.8)

There are generalizations of the lemma: string intertwiners diagonalize the mon-
odromy operators of n endomorphisms (the representatives of the braid generating
the center of B, ), and are orthogonal w.r.t. the iterated left-inverses. To prove the
lemma, one computes

Ay a(TeT7) = Ay - 6pda(TeT7) = $pbalTepy(R3)e(py, Py)py(Ry)T}]
= ¢pdalpaps(RT])e(Paps, PaPs)Paps(TeRy))
= RiT} - ¢pbalpale(pa; ps)rale(rs, Pe))IE(Pas Pa)Pale(ps, pa))l
- T, Ry
= Ao R3T} - dple(pa, po)pale(ps, p8))e(ps, pa)) - Te Ry
= daAp - RS - T7e(pp, pa)e(pa, pp)Te - Ry
= Aadp T;":(Pﬁv Pa)E(paspp)Te
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where the identities = arise since ¢(-) resp. R* - R are applied to scalars, the first
equality follows from the definition of the statistics parameter A,, the second equal-
ity is (2.2), the third equality uses (2.3) and the defining properties of left-inverses,
the fourth equality makes use of the definition of A, and (2.7), and finally the last
equality is the braid relation (2.6) together with the definition of Ag. Now, without
the A-factors, the Lh.s. of the above equation is a positive hermitean matrix P,
while the r.h.s. is a unitary matrix U in the indices e, f. Therefore, P - U* must be
the polar decomposition of AqAg/Ay - 1. This proves the lemma.

Proof of 3.2. We observe that by (2.2) and (2.3)

T:,Pa(E(Pz, p1))e(p2, Pa) = €(p2, Pﬁ)Pz(T:,)

and similarly

T, pa(e(pr, p2)")e(Pas p2)” = €(pp, p2)"p2(T17,) -

Elimination of po(7} ) yields

T;, pale(pr, p2)°) = €(pp, p2)"e(p2, ps)" - T2, Pale(p2, p1)) - €(P2, Pa)E(pa, P2) -

Inserting this into the definition of the R-matrices and evaluating the monodromies
by the lemma proves the claim.

In the following we shall establish algebraic structures of the reduced field bundle
related to the conjugation structure of the superselection sectors. The latter is
realized by several linear or anti-linear maps between charge-conjugation related
intertwiner spaces of equal dimension (cf. (2.11)), e.g., pg — pap and: po — psp.
These maps give rise to numerical matrices (“coupling constants”) 5, 4, (, whose
definitions and relations are listed in Appendix A.

The first conjugation structure in the reduced field bundle is the ordinary adjoint
of bounded operators in the Hilbert space Hreda = @qHao- From the definition
(F*®, ¥) := (®, F¥) for ¥ € Ho, ® € Hp and (A.1), (3.2) one obtains

Proposition 3.4. The reduced field bundle is closed under the operator adjoint
of B(Hred) which is

Fle, A)" = (dp/xs) - D Neer F(e", H(AT)Ry). (3.9)

Here, for e of type (a, p, B), €* is of adjoint type (B, p, @). The operator adjoint
preserves the localization.

Therefore, the C*-subalgebra Frea C B(Hreq) generated by the operators F(e, A)
is densely spanned by F(e, A). The localized subalgebras Freq(O) are taken as the
von Neumann algebras generated by localized F(e, A).

For the CPT theorem we shall need another conjugation operation which in
contrast to the adjoint preserves (actually, charge conjugates) the source and range
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sectors. To this aim, we combine the adjoint with the linear operator “reversal”

defined by
F(e, A) := 1/dg/dq Y05 F(e, A). (3.10)

Here, if e is of type (a, p, B), é is of the “reversed” type (8, p, @). The specific
choice (3.10) (with some arbitrariness in the definition of 6 (cf. (A.3)) making its
appearance below in the square roots /k,) is motivated by the following algebraic
properties.

Lemma 3.5. The linear operator reversal = preserves the localization and com-
mutes with the adjoint x. It is an involution up to an inirinsic sign if pseudoreal
sectors are involved (cf. (3.2)):

Y= X8 .
(F)=32F. (3.11)

Corollary 3.6. The antilinear charge conjugation operation?®
F = (F‘)* = (F*) = da/dﬁ (dp/Xp) : E Cee F(Ea ﬁ(A*)RP) (312)
é

preserves the localization. It involves conjugation of source, charge, and range: if e
is of type (a, p, B), then é is of conjugate type (@, p, B). It is an involution up to
a phase:

F=X.F. (3.13)

Xa
3.4-3.6 can be verified by direct computation (with repeated use of the formulae of
Sec. 2.2., and especially the identities (A .4)).
Along with these algebraic conjugations we have the following “global” (as op-
posed to (3.5)) commutation relations.

Proposition 3.7. (Weak Locality) Let F,, = F(en, Ay) be a chain of reduced field
bundle operators of charge c(e;) = pi, such that s(e1) = r(es) = [0], t.e. Fo... Fy
interpolates from the vacuum sector to the vacuum sector. Let F,, be localized in
regions O;. Then

Fo...Fi=\1/Iik; - Fy ... F, if O1<...<0,. (3.14)
The factor is inverted if the ordering of the localizations is inverted.
This i1s a precise generalization to bounded exchange operators of Jost’s Weak
Locality property [31].
Corollary 3.8. Let F, = F(e,, An) be a chain of reduced field bundle operates of
charge c(e;) = p;, such that s(e1) = [0], i.e. F, ... Fy interpolates from the vacuum

3We adopt this term here although it does not match with the conventional notion of (linear)
charge conjugation of Wightman fields.
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sector to some sector r(en) = [p]. Let F,, be localized in regions O;. Then

Fn...Flz\/(H;Ni)/KP-Fﬂ...F—l if O1<...<0,. (315)

The factor is inverted if the ordering of the localizations is inverted.

We intend to consider below limits of reduced field bundle elements with decreas-
ing localization intervals. The preceding propositions remain valid for such point-
like fields, and when supplemented with the appropriate space-time covariance and
spectrum condition, give rise to the CPT theorem by arguments similar to (31, 32]
or [33]. Note that the reversal = does not respect the algebra (3.4). Therefore, the
charge conjugation (3.12) is not an anti-homomorphism of the reduced field bundle,
nor is it a homomorphism as (3.15) shows. Yet, with the substitute of the anti-
homomorphism property given in the following lemma it seems powerful enough to
play the role of the operator adjoint in a generalized modular (Tomita-Takesaki) the-
ory. The operator adjoint cannot be used to define a modular conjugation w.r.t. the
reduced field bundle because of the source and range prescriptions.

Lemma 3.9. Let F; = F(e;, A;) be two reduced field bundle operators of charge
pi, and s(e;) = [0], r(e2) = [p]. Then

Fles, AD)F(er, A1) = D y/kika/wo REL(4) - F(f1, A1) F(f2, A)). (3.16)
!

10f2

This formula holds irrespective of the localization of F;. The coefficient matrix
equals \/k,/Kk1k2 R{22{2(—) by virtue of (3.7), and has square 1. The “off-vacuum”

eg0€1
generalization of (3.16) is more complicated; one has to replace the k-factor by the
sum over the projection matrices in path space pertaining to the different fusion

channels [p] contributing to [p; p3], each multiplied with the corresponding «-factor.

Proof of 3.7. For O; < ... < O, we have by repeated use of the commutation
relations

F(Cn, A,.)...F(el, Al)
=Y (T2, . T pn, - p)Ta - T1) - F(f1, AL) .- Ffn, An),
fi

where €™)(...) 1= €(ps-.-Pn, P1)E(P3 - Py P2) - -E(Pn=1Pn, Pn—-2)E(Pn, Prn—1) is
the statistics operator corresponding to the re-ordering of the field operators. We

shall compute the matrix elements. Because s(f,) = [0] = r(e,) and ¢(f;) =
c(ei), fa is of trivial type and equals é,. Therefore, Ty, = 1 and §;" = 1. Call
T = &(pn, pn-1)T}._,, and let [p] = r(fn_1). Repeated use of (2.2) gives

€ (pn, .., pr) Tty = p1-- - Pac2(TIE" ", puca, ..., p1).
Next, let [o] = r(en—2). Then

T ... Tp1...pn-o(T) = T2.T7._ o(T)T:.

€n-1

%
ST

2"
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Inserting a complete basis £,7,T, after ¢(T), and observing that T; T; _ o(T)T,
is an intertwiner from r(g) to r(e;) = [0], we conclude that only r(g) = [0] can
contribute, and hence ¢ = p and f,_; is of type é,_;. Therefore, T, = R, and
T, = R,, and the mentioned self-intertwiner of the vacuum equals 9;::: except for
the x-phases in the first of its definitions (A.3). The remaining expression is of
the same form as the original matrix element with n decreased by 1. Repeating
the argument, we arrive at the conclusion (3.14). For the reversed ordering of
localizations, use the equivalent second definition of 8 in (A.3), yielding the inverse
k-factor.

Proof of 3.8. By (3.4), F, ... F1 is some element F = F(e, A) with e of trivial
type (0, p, p). Pick an element G = F(e*, B) localized in O > O,,. Then by (3.14)

kK, FG = GF = GF, . =\/1/8,1Lik; - Fy .. . FaG.

Taking the adjoint yields

5F= \/(H,'IC,')/ICP 5_17"?1 .

Finally, choose B = U a unitary intertwiner: p — o with o localized in @. Then
G = F(e*, U) is localized in O, and G inverts G on H, up to some non-vanishing
factors:

GG x F(&, U)F (¢, p(U")R E D%¢ - F(g, T} Rp) o< 1|,

since T Ry = 0 unless r(f) = [0], therefore c(g) = [0) and Ty = R;, TfR; = 1.

Proof of 3.9. By direct computation with (3.4) and (3.12), exploiting the
triviality of s(e;), and hence T., = 1, to evaluate the D and ( coefficients, we get
for the 1.h.s.

Lhis. = \/d,/x, - F(&, p(A]p1(A3)) - p(Te;)R,)
with e of type (0, p, p). Similarly, with Ty, = 1 the r.h.s. yields

I‘.h.S E \/K, /Kllcg R{;:gf (dle/XIXZ\/J;;) 'Cfxf_x

fref2
- F(e, p(A1p1(A2)) - T7, p2(R1)Rz) .

Now, consider the intertwiner X = Tf'ilﬁz(Rl)Rg : id — pp2p1 contributing to
the r.hs., which can be expanded into an orthonormal basis of intertwiners X; =
p(e(p2, p1)Ty)R, with f of the same type (p1, pa, p) as fi:

X=) (X;X
!
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The scalar product X;X equals C}'—l ; 88 in (A.3) except for the factors x. With
(A.4(e, f)), the two matrices ¢ yield é;;, times some more factors. The R-matrix
element of the r.h.s. multiplied with €(p3, p1)Ty, yields just T.,, so the intertwiner
in the local entry of the reduced field bundle operator on the r.h.s. becomes the same
as on the Lh.s. Finally, collecting all the factors x, &, d one establishes equality.

4. Covariance

Let us now consider covartant superselection sectors. A DHR endomorphism p is
covariant if there is an associated strongly continuous unitary positive-energy rep-
resentation U, : G — B(HMo) of the universal covering of the space-time symmetry
group G satisfying

Up(§)mop(AWU,(3)" = mop(ag(A)), (4.1)

where a : G — Aut(A) is the representation of G by automorphisms of the local
net A, and §j — g is the covering projection G — G. We assume that there is
a unique vacuum vector § = (0, Q) € Hg invariant under the covariance of the
vacuum sector Up(7y).

The property of being covariant does not change under unitary equivalence trans-
formations among DHR endomorphisms, and is therefore a property of the sector.
We recall from [4] that the product and the conjugate of covariant sectors are again
covariant, as well as every subsector of a covariant sector. The latter statement
follows by an argument given in [4), if the space-time covariance group possesses no
non-trivial finite-dimensional unitary representations, e.g., the Poincaré groups in
two or more dimensions, or the Mobius group. More precisely, for covariant DHR
endomorphisms p, o

Usp(§) = Us(9)T00(X,(3)) where  X,(§) = 75" (Uo(9)" Uy ()
100 (Yp(§)WUo(3) where Y, (3) = m5" Up(@Uo(9)"),  (42)

Us(§) = (do/xp) - mo[p(ag(RF)Yo(3)")R,] - Un(g) (p irreducible}, (4.3)
7o(TWU,(-) =Us()7me(T) VT :p— 0. (4.4)

Here Uy : G — B(Hy) is the covariance of the vacuum sector, induced in the
GNS representation my from the G-invariant ground state. It is important to note
that the cocycle U,(-)Uo(-)* intertwines the representation 7, o p and its translate
mp 0 (@~ o poa). By Haag duality, it is the image under m of a local intertwiner

1

“charge transporter”). Therefore, X, : p — a 'paand Y, : apa~! — p above are
g P p P p P P

well-defined local operators as long as m is faithful. Clearly, X,(§)* = Y,(§7%).

Exercise. Check that (4.3) is a representation of G satisfying (4.1) for 5. To
prove unitarity, note that R’ := p(Y,") R, is an isometric intertwiner: id — pp’ where
¢ = apa~! € [p]. Choose U : p — apa~! unitary. Then R' := a[pa~}(U*)R;] is
an isometric intertwiner : id — p'p. Now, p(a(R;)Y,)R-U = p(R*)R' is a scalar
of modulus 1/d,, therefore (4.3) is unitary.
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The covariance is implemented on Hreq by the representation U = @, .

Lemma 4.1. The space-time covariance acls on Fpoq like
aj(F(e, A)) :=U(F)F (e, AJU(G)" = F(e, Y,(g)ay(A)). (4.5)

In particular, the effect on the local degree of freedom A depends only on the charge,
but not on the source and range sectors. az; commute with the adjoint, reversal, and
charge conjugation operations of Sec. 3. The action is geometric:

aj(Fred(0)) = Frea(9(0)) - (4.6)

(4.5) can be verified by application to an arbitrary vector in the source Hilbert
space. aj commute with the reversal (3.10) since they affect only the local degree
of freedom of F(e, A), and with the adjoint by definition (in order to verify a( F*) =
(a(F))* directly, (4.3) is needed). That the action is geometric, is evident from the
criterion (1.3).

5. Non-Trivial Space-Time Topologies

The analysis of the preceding sections was made on the premises that: (i) the
positive-energy representations of interest describe charges which are localizable
in bounded regions, i.e. the restrictions to the subalgebras of causal complements
of bounded regions are all unitarily equivalent to the vacuum representation; (ii)
the bounded regions of space-time (double cones) form a directed set w.r.t. inclu-
sion that have non-trivial causal complements; and (iii) Haag duality for the local
algebras associated with double cones [4] holds in the vacuum representation.

We shall discuss in this section the necessary modifications, as well as conse-
quences when the above properties have to be relaxed. The first situation of interest
is that of conformal light-cone quantum field theory in two dimensions. It has been
shown in [34] that in general for these models, which are originally defined on the
light-cone R, Haag duality for intervals does not hold. It fails, e.g., for the algebra
generated by the energy-momentum tensor with central charge ¢ > 1. Exploiting
the covariance under the real Mobius group SL(2, R)/Z,, one can, however, ex-
tend the theory to a theory on the compactified light-cone S!. Since, e.g., by the
Bisognano-Wichmann theorem [33] for local algebras generated by Wightman fields,
Haag duality follows for half-lines in R, it holds by conformal covariance for proper
intervals and their complements on the circle. But the set of proper intervals is not
a directed set, so the global algebra has to be defined in a different way [11, 18]. We
shall present this construction below.

The second case of interest is the 2 + 1-dimensional situation with charges local-
ized along space-like cones extending to infinity. This is the best localization that
may be expected a priori [9] for positive-energy representations with an isolated
mass-shell. It suggests the physical interpretation of gauge charges, whose total
space-like flux cannot vanish by Gaufl’ law, while the partial flux asymptotically
tends to zero along any interval < 27 of space-like directions. The case of more
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than 2 + 1 dimensions leading to permutation group statistics has been treated
earlier [9,24]. An extension to 2 + 1 dimensions was also performed by Frohlich
et al. [7], by one of us [21], and in the diploma theses of Riiger [35] and Gaberdiel
[36]. Asymptotic clustering properties of the scattering matrix were discussed by
one of us [37)].

In the previous treatments of superselection charges localized on space-like cones
S, it was observed that the operator maps p induced by the identification of the
representation space of © with that of my are not endomorphisms of .4 but only
monomorphisms of A into B(Hy). Moreover, the unitary intertwiners relating dif-
ferent choices of p are by Haag duality in the weak closure of mo(.A(S)) but, in
general, not in w9(A). The necessary extension of p to a larger algebra depended
on some arbitrary “forbidden” space-like direction r (analogous to “infinity” on
the conformal light-cone), and it was the main problem to check that the resulting
structure of sectors is independent of r.

Actually, there are only two points in the analysis in [9] which have to be mod-
ified in 2 + 1 dimensions. One is the Haag-Ruelle construction of multi-particle
scattering states. The argument given in [9] that the multi-particle state vectors
are, independently of the Lorentz frame in which the construction was performed,
uniquely characterized in terms of single particle state vectors breaks down in 2
+ 1 dimensions. One rather obtains, given a configuration of single particle state
vectors, different multi-particle state vectors which are transformed into each other
by a pure braid transformation depending on the momenta of the single particles
[35,36]. Details of the scattering theory will appear elsewhere (cf. also [7b] for the
case of abelian braid group statistics).

The other point in [9] which has to be modified is the definition of field bundle
elements which are localized in space-like cones. It turns out that the field bundle
elements rather depend on a homotopy class of paths in the set of space-like cones
and are therefore localized in a covering space. It is precisely this phenomenon
which underlies braid group statistics in three dimensions.

We introduce here a more flexible formalism than in [9] to treat the algebraic
situation associated with the hyperboloid of space-like directions. Actually, the
situation is much the same as with the circle (the compactified conformal light-
cone), and we shall present this formalism in all detail only for the latter. The
essential objects are the “universal algebra” of observables A,y containing globally
localized observables, and DHR endomorphisms of Ayniv which do not depend on a
reference point resp. direction. The dictionary between the relevant geometry of the
hyperboloid and of the circle, with complete parallelism in the algebraic structures
of the universal algebra, will be given thereafter.

The following subsection is devoted to the construction of the universal algebra
and of its DHR endomorphisms which induce the positive energy representations of
interest. Once these structures are established, one can apply the methods of the
standard DHR theory. Yet, we shall exhibit in Sec. 5.2 new algebraic structures
related to global operators without a precedent in the standard case. We identify the
abstract version of Verlinde’s modular algebra [19] within the universal algebra. In
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Sec. 5.3, we concentrate on chiral conformal theories and derive the Spin-Statistics
theorem in its strong version and the CPT theorem for charged fields.

5.1. The universal algebra and its endomorphisms

The space-time symmetry group of two-dimensional conformal quantum field
theory is (SL(2, R)/Z;) x (SL(2, R)/Z;), the product of two Mdbius groups acting
on either light-cone. These groups can be implemented only if the light-cone is
compactified to S!. In fact, chiral local fields such as the energy-momentum tensor
are periodic in the circular coordinate 9, z = tan(9/2) [38].

One is therefore led to consider the family of von Neumann algebras A =
(A(I))res on some Hilbert space Hy, indexed by the set J of proper intervals
I C S, as the theory of chiral observables. On M, there is given a strongly con-
tinuous unitary positive-energy representation U of the Mobius group M with a
unique ground state such that

(i) AI)C A(J) if TcJ(I,JeJ) (isotony)
(i) AI)C A(JY if ICJ' (I,J€J) (locality)
(i) U(g)A(DU(g~) = A(gI) (g € M) (covariance). (5.1.1)

Locality will be replaced by the apparently stronger property of Haag duality
A= A (I€J), (5.1.2)

where I’ is the complement of I in S!. (Note that as a consequence of the strong
continuity of &/ and the covariance of A4, the algebras A(I) do not depend on whether
or not I contains its boundary points.) Haag duality has been proven by Jér8 [39]
under the assumption that the multiplicities of irreducible subrepresentations of U
are finite.

We are interested in conformally covariant positive-energy representations = of
A. By this we mean a family of representations 7! of A(I), I € J, on some Hilbert
space H together with a strongly continuous positive-energy representation U, of
the covering group M of M such that

) ®an=7 if IcJ (I,J€)

. . - (5.1.3)
(i1) Adu’(g) orxl = 9 °Adu(g)|A(I) (IeJ,geM)

where § +— g is the covering homomorphism.

Buchholz et al. [5] have shown that each of these local representations #7 is
unitarily equivalent to the defining representation id4(1) =: 7f. As usual in the
DHR theory, one exploits this equivalence for the complement of some Iy € J to
identify H, with Hy such that rlo = idA(Ié). We say that = is localized in Iy. If
we replace Iy by I; with Iy C I) or Iy D I;, we obtain an equivalent representation
1 localized in I

m =Ady,on! (I€J)
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where the unitary intertwiner U is an element of A(Iy N I1)’, hence of A(Jo U I1)
by Haag duality. Iterating this procedure, we find that the unitary intertwiner U in

# = Adyor! (Ie€J) (5.1.4)

where # is localized in I, admits the following representation as a product of local
operators. A finite sequence

7=(IO’115"-aIn:j)

in J such that for k = 1...n either It_y C I} or Ix—1 D Iy may be called a path
in J from Iy to I. Then there are local unitaries Uz € A(ltcq U L) (k= 1...n)
such that

U=0U0,...U;. (5.1.5)

We may invert (5.1.4) and define 7 in terms of intertwiners. Namely
! = Ady-|any (5.1.6)

where U of the form (5.1.5) is a unitary intertwiner to some representation # local-
ized in I properly contained in I’, i.e. gI C I’ for all g in some neighbourhood of
the identity in the Mobius group (Notation: I € I').

In the standard theory, (5.1.6) is used for the definition of the composition of
representations: for A € A(I), 7'(A) is a product of local operators, hence if 7' is
a representation of the algebra generated by all local operators, then the composite
representation is defined by the composition of mappings

(' x 1) =n'onl.
It is, however, not true in general, that a consistent family (in the sense of (5.1.3(i)))
of local representations 7’/ extends to a representation 7’ of this algebra. This
may heuristically be understood by the possible existence of local charge operators
associated to complementary regions which add in the vacuum sector to zero. Hence
if #’ were well-defined, the charge would assume the value zero also in the sector of
7.

There are several ways out which were adapted to models in conformal quantum
field theory [5, 27, 40] or were used in the corresponding problem with gauge charges
[9,24,7,35,36]. Here we take a point of view first proposed in [11] and further
developed in [18]. The system of local algebras (A(I));¢s uniquely determines a
C*-algebra Aypniy Which satisfies the following universality condition:

(i) there are unital embeddings i! : A(I) — Auniv such that
Pn=i" if IcJ (I,J€d), (5.1.7)

and Auniv is generated by the algebras i (A(I)), I € J;
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(ii) for every consistent family (in the sense of (5.1.3(i))) of representations ! :
A(I) — B(Hy) there is a unique representation 7 of Ayniy in H, such that

roil =7, (5.1.8)

The Mobius group acts by automorphisms a, of Ayniv

Qg O i[ = igI o Adu(g)IA(I) s (519)

and a conformally covariant positive-energy representation 7 = (#!);c s in the
sense of (5.1.3) corresponds to a covariant positive-energy representation 7 of Aypiy
in the usual sense. The defining representations i/(A) + A induce the vacuum
representation mg of A,niv. We shall see that m is in general not faithful.

Let now 7 be a conformally covariant positive-energy representation of Ayniy
which is localized in Iy € J. We want to find an endomorphism p of Aypniv such
that # = mg o p. In view of the universality property of Auniy it suffices to define a
family of homomorphisms p! : i/ (A(I)) — Auniv such that

Pllay=p" if ICJ (I,J€JT). (5.1.10)

Let I € J and let U be a unitary intertwiner from 7 to # where # is localized in
Ieg, €l Lety= (o I,..., I, =I) be apath in J from I to I, and let
(5.1.5) be the corresponding factorization of U. Then we set

pl = Adv|ay with V =iolyur).  i~-10(Ur). (5.1.11)

By standard arguments exploiting Haag duality it is clear that p! thus defined is a
consistent family (5.1.10) and do not depend on the choice of U nor on the choice
of factors Uy € A(Itx—1 UI). It is less clear that it is also independent of the choice
of the path «.

A path 9 may be called a small deformation of v if it is obtained by insertion of
one interval between I;_; and I for some £ = 1...7n or by omission of one interval
I, k=1...n—1. It is easy to see that small deformations do not change p’.

Next, ¥ may be called homotopic to v if it is obtained from ¥ by a finite sequence
of small deformations. Then p! can depend at most on the homotopy class of 5.

In the last step, we convince ourselves that even this can be ruled out. For this
purpose it is sufficient to consider the closed paths of the form

y=W,J,1,I,,I) where Jy, Jo,IUI

from I to I, and verify that p! does not change if in (5.1.11) v is replaced by 0y
running through % after v. Let U be a unitary intertwiner from # to # to where #
is localized in I. Then a factorization (5.1.5) of the trivial intertwiner 1 associated
with ¥ is

1=1.0*1.0=0*.0.
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Let A € A(I). Choose some 1) I, I ¢ J1 N J;. Then we can compute for both
J=JyorJy

Ad,; (i (A)) = 77 (Adg(A)) = 7 0 71 (4) = T 0 77(4),

where we have used (i) that U and A lie in both .A(J;) and .A(J3), (ii) that Adp(A) =
#1(A), and (iii) that #/(A) is contained in A(I). Since the result is the same in
both cases, we have

Ady (i7(A)) = i/(A) where V =i’y (U)*i’2(0).

We conclude that p! : /(A(I)) — Auniv given by (5.1.11) are completely inde-
pendent of the path v and of the local unitaries Uy. Since Aypiy is generated by
(¢'(A(I)))1es, these homomorphisms define a localized DHR endomorphism p :
Auniv — Auniv such that 7 = mg 0 p.

Let us now turn to the analogous situation in 2 + 1-dimensional theories with
charges localized in space-like cones. The latter are subsets of Minkowski space M3
of the form

S=a+ U A0,

A>0

where a € M® is the apex and @ is a double-cone of space-like directions:
O={reM®r’=-1 and ry-r, r—r_eV;}

with r2 = r2 = —1 and r4y — r_ € V4. By S we denote the set of space-like cones.
The causal complement in M® of a space-like cone S is denoted by S'.

We consider theories where the vacuum representation 7y satisfies Haag duality
for space-like cones:

mo(A(S)) = mo(A(S))" (S€S), (5.1.12)

and representations r of A which in restriction to causal complements of all space-
like cones are equivalent to wg:

Tlacs'y = Molacsy (S €S). (5.1.13)

The selection criterion of finite statistics may be replaced in view of [6] by the
condition of “almost Haag duality”, i.e. the Jones indices of the inclusions

m(A(S))" C m(A(S)) (S€S)

are finite. The criterion (5.1.13) has been proven to be fulfilled (for a suitable
vacuum representation 7o) under the assumption that 7 contains states of a single
particle with an isolated mass-shell [9], and then = satisfies almost Haag duality
provided =g satisfies Haag duality (5.1.12).
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We may literally repeat the above definitions and arguments for the 2 + 1-
dimensional situation, if we let the index I € J of subalgebras run over the set
J = SU{S’|S € S} containing the space-like cones and their causal complements
in M3. The associated algebras A(S), A(S’) are, in accordance with (5.1.13),
identified with their weak closures in the vacuum representation. The previous
local intertwiners are understood as elements of some A(S) or A(S’). Clearly, the
Mébius group has to be replaced by the Poincaré group.

We have therefore also established the universal algebra A,,, and its DHR
endomorphisms for three-dimensional quantum field theory.

We emphasize that by the above construction, and in contrast to previous treat-
ments in 2 + 1 dimensions, the universal algebra and its endomorphisms are defined
globally, i.e. without reference to an auxiliary direction. Thus the observables and
their charges “live” in “true” space-time. Only the localization of charged fields will
be seen below to depend on an auxiliary direction resp. “point at infinity” of S!,
and therefore the latter live on a covering space.

We expect that the present geometrical formalism is sufficiently flexible to apply
also to more general space-times than the two treated here.

5.2. The center of the universal algebra and its representations

We shall in this subsection discuss the implications of the existence of global
intertwiners in the universal algebra Ayn;v, and in particular establish the relation
between the statistics monodromy and the non-faithfulness of the vacuum represen-
tation. Again, the results of this subsection hold as well in 2 + 1 dimensions, with
the appropriate replacements as described in the preceding subsection.

Once the existence of the universal algebra and its endomorphisms has been
established, it is more convenient in the following to consider A € Ayniv and A(I) C
Auniv as abstract elements of Ayniv, and only 7(A) as operators on the Hilbert space
Ho. None of these representations is globally faithful. Then the unital embeddings
i/ (5.1.7) become obsolete, and are replaced by the pre-images (molacry)~" of the
local vacuum representations.

It is also convenient to introduce for every “point at infinity” ¢ € S, the C*-
subalgebra A, = {A(I)|I C S, £ ¢ I}. Endomorphisms of Ap;y localized in I 3 £
are DHR endomorphisms of .A;. Indeed, the theory of statistics and the reduced
field bundle can be established on .4, without modification, since for the existence
of local intertwiners between endomorphisms of A, Haag duality on S* is sufficient.
Restricted to A¢, the vacuum representation g is faithful.

However, the statistics operator defined in Sec. 2.2. will in general depend on the
reference point at infinity £, since the “initial condition” (2.5) does. More precisely,
for p localized in J and o in I, e¢(p, o) € A¢ is defined as in Sec. 2 provided
§€ € I'nJ', and does not change as long as £ changes continuously. Therefore,
when I’ N J' is disconnected, the statistics operator may take different values. The
following configuration is illustrative: Let I, J be disjoint intervals and £, { points
in the two connected components of I’ N J’ such that { is reached from I by a
positive rotation, and £ by a negative one. Let p be localized in J and ¢ in I. Both
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of them are endomorphisms of both .A¢ and A;. But by (2.5), within A¢, e¢(p, o) is
trivial, while within A¢, ¢¢(o, p) is trivial. The prescriptions ¢; and ¢; can coincide
only if the monodromy is trivial.

Next, let us study global intertwiners. Let I, J € J and &, ¢ € I'NJ’ as above,
and let this time both p and o be localized in I, and choose j € [p] localized in J.
For this geometry, the statistics operators e(p, o) and ¢(o, p) € A(I) C A N A
coincide for £ and (. By Haag duality, a unitary intertwiner V : mpp — mop lies
both in 7o(A¢) and in mo(A;). Let Vi € Ae and V_ € A, be its pre-images:
7mo(V4) = mo(V-) = V. We want to study the global self-intertwiners

Vo=ViV_o:ip—p. (5.2.1)

V, are in fact independent of V and p € [p], and commute with local self-intertwiners
of p. (Proof Let U be a unitary local self-intertwiner of p. Then Vmy(U) is a
different choice instead of V, giving rise to Vo U = Vo UV} - V4 instead of Vi. But
ViUV are local self-intertwiners of p with the same images in g, and therefore
coincide and cancel from (5.2.1). Replacing p by Adg op and V by wo([}')v trivially
does not change (5.2.1).)

From the definition of statistics operators, and because J lies to the right of I
w.r.t. £, and to the left of I w.r.t. {, the statistics operators can be computed from
the local charge transporters V,:

elp, o) =a(Vi)'Vy, elo, p)* =o(V_)'V_, (5.2.2)
and therefore

o(V)) = elp, oWVpelo, p) = moo(V,) = mole(p, 0)e, p)].  (5.2.3)

The first of these identities stands in contrast to (2.2) which therefore in general does
not apply to global intertwiners. The second identity exhibits the non-faithfulness
of the vacuum representation: while V, is trivially represented by g, its value in
oo is the monodromy operator.

Proposition 5.1. The (global) “Casimir operators”
W, = R;V,R; (=«2-6,(V,) if pis irreducible) (5.2.4)
(with R; : id — pp as in Sec. 2.3.) lie in the center Auniv N A] of the universal

univ
algebra. They depend only on the class [p]. Their values in different representations

are (for p, o irreducible)

£, d

(5.2.5)

7P Kpke dods

oo (W,) = moa(W;)* = mop(W,) = Z N,
-
The central elements C, := d, - W, salisfy the fusion algebra
(a) C; =C;
(b) Cop=Cs-C,
() Co=D_N®Co if p~®aN*p,. (5.2.6)
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Proof. For fixed choice of p and g, R; is unique up to U p(0), where U and U
are unitary local self-intertwiners of p and p. This unitary operator commutes with
V, and does not change W,. Changing p and p with arbitrary local unitaries into
Ady o p and Ady o p, one may replace R; by U p(U)R; and V, by AdyV, which
again leaves W, invariant. The formula for irreducible p follows from (2.7), (3.7),
and (5.2.3), if one chooses R; = ¢(p, p)R,. That W, are central, is evident from
the intertwining properties. In order to derive (5.2.5), we compute

m00(W,) = 10 (R, Bs) = molo(R})e(p, 0)e(o, p)o ()]
= rolRyp(e(, 0)*e(a, 5))Rs] = molds(e(p, o) e(o, )°)].

For irreducible p, o, the local self-intertwiner of o in [...] is a scalar and can be
Tewritten

o(Rp)e(p, 0)e(a, p)o(Rp) = Ry - $o(e(p, 0)e(0, p)) - Ry = ¢o(e(p, 0)e(o, p)) -

Inserting orthonormal bases 1 = £,7.T; in either of these final expressions, and
evaluating the monodromy by (3.7) and ¢(7.77) by (3.8) yields (5.2.5).

To prove (5.2.6(b)), we may choose unitary charge transporters for op by V,,4 =
Voy0(Voy) = Vou Vaye(p, 0)* and V,, = V,_V,_e(p, 5)*. Then

Vop = o(Vy Vo Vo Vo—e(p, 0)" = Voe(p, 0)V,e(p, 0)*,
and (b) follows (with the choice Rzz = o(R;)Rs) from the definition and the
identity e(p, o)*o(Rz) = p(e(p, 0))R;.
For (c¢), let po be localized in I and let T': p, — p be a local intertwiner. Then

V,+TV,, arelocal intertwiners : p, — p with the same images in =g for both signs,
and therefore coincide. We conclude that T intertwines the global operators:

TV, =V,T.

Next, choose orthonormal bases of local intertwiners To; ¢ po — p and Ty
pa— p(i,j=1...N*). Then {\/d,/da - T ; Rz} and {pa(Ta,;)Ra} are two sets
of orthonormal bases of the local intertwiner spaces : id — p,p. We compute
Cp=d, R;VyRp =d, - RZ0iTeiVaTa Ry
= X4,jda - R3pa(Ty ;) Vapa(Ts,j)Ra = Ea N*Co .
Finally, in order to prove (a), let p and p be localized in I. Choose equivalent  and
p localized in J, and Rﬁ : id — pp local intertwiners in A(J) as in Sec. 2.3. For
Vi unitary charge transporters : p — p with the same images in 7y as before, we
choose Vy =d, - R;ﬁ(V;Rﬁ) =d, - Rye(p, ﬁ)V_;Rﬁ and V. =d, - Re(p, ﬁ)V_‘Rﬁ

which are unitary charge transporters : j — p with the same images in 7. Then
Wy = RV;V-R, = d- RyRSVie(p, 5" Ry Rie(p, V- B3R,
=d2. R}’V_,,p(R;)RpR}p(R,,)V_‘ Rs= R%v+ VIRs=W; =W, .
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In this calculation we have used (i) that V{ Rﬁ are intertwiners: id — pp and p acts
trivially on R,, (ii) that we may choose R, = ¢(p, p) R;, (iii) that p(R;)R;R;p(R,)
= d;z, and (iv) the fact that since V, is a charge transporter of p to the right, V}
is a charge transporter for p to the left and vice versa: Vi = Vz. This completes
the proof.

Let us now assume for the moment the number of irreducible superselection
sectors of the theory to be finite. The matrix (5.2.5) of numerical values moo(W,)
(as [p], [0] run over the sectors) was discussed previously by one of us [20] and
by Frohlich et al. [7c]. It was found that in theories with finitely many sectors
the values of W, in all representations wgo uniquely characterize the sector [p],
provided the vacuum sector is the only one which has trivial monodromy with all
other sectors (the “non-degenerate” case). In other words, the central elements
W, may be regarded as a complete system of “charge operators”. Observe that
(5.2.6) generalize the algebra satisfied by the sums over conjugacy classes of a finite
gauge group represented in Hilbert space, and therefore the matrix (moo(W,)) is a
generalized (self-dual) character table. We recall its properties in

Corollary 5.2. ([20, 7c]) The matriz (5.2.5) is invertible

(1) iff the theory is non-degenerate, or
(i) iff |Zpk,d2|? = £,d2. The matrices

Spo = |2.,d,21|‘1/2dpd, - w0 (W)

5.2.7
T = k™! . Diag(x,) where &%= (E,,n,,d,z,)/|2pnpdf,| ( )
satisfy Verlinde’s modular algebra [19]
(a) SSt=TTt' =1
(b) TSTST =S (5.2.8)
(c) S*=cC o

(d) TC=CT =T,

where Cp, = 855 i3 the charge conjugation matriz.

This algebra was originally found in models of conformal quantum field theory *
[19]. In [20,7c] this remarkable result was derived from the DHR theory without
any input of conformal covariance. It holds also for theories in 2 + 1 dimensions
with finitely many sectors (cf. also App. B, remark after Cor. B.3).

Finally, the central element W/mo(W) with W = 3~ k;1d2. W, can be seen
to take the value ko, in the representation moo. Anticipating the Spin-Statistics
theorem 5.4 below, this coincides with the operator implementing rotations by 27.
Therefore, in the center of the universal algebra of observables are united special
elements of both the space-time covariance group and the unknown quantum sym-
metry algebra. This is clearly a structural departure from the conventional situation
with a global gauge group.
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Having outlined the characteristic new features of the universal algebra and its
DHR representations, we turn to the aspects of space-time covariance. Without
further input, we can derive a connection between spin and statistics.

The covariance property (4.1) is required to hold globally, i.e. for the full Poincaré
or Mobius group for all A € A4, as our selection criterion for covariant sectors. How-
ever, the composition and conjugation rules (4.2 + 3) make sense only as long as
g:(I) keep at space-like separation from ¢ when g; is a path in G of homotopy class
g. The pre-image of the cocycle is then a local operator in A¢. For larger §, U,,
and U; can be computed as products of smaller transformations.

Let the space-like rotations resp. rigid rotations of the circle by the angle ¢
be implemented by U,(¢). It follows from (4.1) that U,(27) commutes with the
irreducible representation mop(A), and therefore is a scalar:

Uy(2m) = e2™ihe (5.2.9)

In the conformal case, we define the primary scaling dimension h, to be the infimum
of the spectrum of the generator Lo of U,(y) in the sector H,. The infimum exists
due to the spectrum condition. In the three-dimensional case, we choose the spin
quantum number 0 < h, < 27. Clearly, Up(27) = 1 and hg = 0.

Now let p be localized in some interval (cone) I small enough such that I has
no intersection with the rotated interval (cone) 7I. We apply the argument leading
to (5.2.2) with J = nI, V = Up(w)*'U,(7) and p = a, o po ay. In the intertwiners
of (5.2.2) we recognize the cocycles arising in (4.2): A¢ 3 Y,(—7) = V* and A¢ 3
Y,(+m) = e2rike V. Therefore, we can compute for irreducible o, p

Usp(21) = Uy (YU g p(—7)*

= moo (2" P VU, (1) - [moa (VI )Us (—m)]* = €2 Pe e R 100 (V) .
(5.2.10)

Multiplying with 7o(T") from the right, where T': 7 — op, 7 irreducible, yields with
(4.4), (5.2.3), and (3.7) e?"¥(*-=ho—he) = x_/k,k,. This is a weak version of the
Spin-Statistics theorem [7,21]:

Proposition 5.3. Let p, o, T be irreducible DHR endomorphisms. If [t] arises
as a subseclor of [0 p], then

e2milhr—ho—hy) _ K7 , in particular 2" (Reths) — Ic;zz- (5.2.11)
KoKp
The result of this subsection hold as well in the 2 + 1-dimensional situation. The
point at infinity € has to be replaced by a space-like direction r € M3, r?> = —1, and
A by A, = {A(S)|S 3 r}, where “r € S” is understood in the asymptotic sense.

5.3. The conformal exchange algebra on the circle

The Proposition 5.3 implies e?**» = k, provided there happens to be some

irreducible sector [¢] such that [¢p] contains [o] as a subsector. In general, however,
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this stronger relation can be obtained only by combining algebraic with analytic
properties, but the latter require some further physical input. In order to keep
the analytic part which is beyond the scope of this article as short as possible, we
shall concentrate in this subsection on the conformal light-cone case, where by scale
invariance it is very reasonable to postulate the existence of well-behaved point-like
limits. An analogous treatment should also be possible for the three-dimensional
theory, but will not be done here.

In order to derive the strong version of the Spin-Statistics theorem in chiral
conformal theories, it is sufficient to consider a subalgebra .A¢ w.r.t. some fixed point
at infinity {. We may construct the corresponding reduced field bundle Freqe =
{F (e, A)|A € A¢} by choosing reference endomorphisms py € Areq of A¢ localized
in I, £ ¢ I, and local intertwiners T, € A¢. The latter exist by Haag duality on the
circle. The results of Sec. 2 and 3 hold within A; resp. Freqe. We shall therefore
omit the label ¢ and identify the uncompactified light-cone S \ {¢} with R. The
“universal” reduced field bundle will be discussed in the end of this subsection.

Consider the 2-point function

Az = y) := (azar(F(e, A)Q, ayan(F(e, A))S),

where F(e, A) is a localized operator with e of type (0,p, p). @, is a scale trans-
formation to be considered later in the point-like limit A ] 0, and a,, o, are trans-
lations of the uncompactified light-cone. Weak Locality (3.14) tells us

<FzQ, F19> = K;I(FlQ, F—QQ) for 02 > 01, (531)
therefore for A sufficiently small (jo — y| sufficiently large)
falz —y) = 3D fi(y — ), (5.3.2)

where f is defined as fy with F(e, A) instead of F(e, A).
We want to compare this behaviour with that of 2-point functions of conformal

fields o o aa

f@ —y) = (pa(z)Q, pa(y)?) =e " (z —y—ic)”

fly—2) = (2a)Q, ¢a(x)Q) ="y -z —ie)™™
understood as distributional boundary values £ | 0 determined by the spectrum
condition (the orientation of the light-cone is chosen from its projection onto the
time axis). The scaling dimensions d, d lie in the spectrum of Lo (cf. (5.2.9)),
ie.d=h,+n, d=h;+n. The coefficients in (5.3.3) are determined by positivity.
These 2-point functions satisfy a relation of the same form as (5.3.2)

(5.3.3)

flz —y) = e*ridsen(y=2)f(y _ ) provided d=d. (5.3.4)

Since we expect that in the point-like limit A | 0 the (appropriately rescaled)
functions fx, f) tend to conformal 2-point functions of the form (5.3.3), we would
conclude that the scaling dimensions of the limit fields of @) (F) and a,(F) coincide,
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and the phases in (5.3.2) and (5.3.4) also coincide. Therefore, d = d = h, + n and
e2™ihs = ¢27hs = ,. For this conclusion it is necessary that the limit A | 0 can
be controlled. In particular, the localized operator F' = F(e, A) we started from
must be chosen such that the high-energy spectral content of the vector FQ2 € K, is
sufficiently well-behaved. For a detailed construction of a dense set of such vectors
in the vacuum sector see [39]. We do not expect any essential complications for the
charged sectors.

It is clear that in the point-like limit, a) (F)Q = U,(A)F2 gets dominated by its
contribution belonging to the Mobius group representation with the lowest scaling
dimension (in general the primary one). It was also discussed in [39] that one can
apply suitable (real) polynomials P; of the Casimir operator of the Lie algebra of the
Moébius group which annihilate the spectral contributions with scaling dimensions
< d. Understood as polynomials in infinitesimal transformations aj, Py are local
operations on the reduced field bundle. Therefore one can as well obtain the higher
(quasi-primary) fields as point-like limits of suitable localized operators from the
reduced field bundle acting on the vacuum:

(¢5)e(e) := lim A~* - azar o Pa(F(e, 4)). (5.3.5)

Since a; and thus P; commute with the charge conjugation operation, and the
latter also commute with conformal transformations, the same argument as before
shows that the full spectra of scaling dimensions in the sectors p and p coincide.
‘We summarize the discussion by

Proposition 5.4. (Spin-Statistics Theorem) On the premises that the on-
vacuum point-like limit (5.3.5) yields fields (p4).(z) which generate a dense sub-
space of Hyeq from the vacuum vector Q, the spectrum of chiral scaling dimensions
of fields of charge [p] is contained in h, + Ny, with

Uy(27) = e2™he =, . (5.3.6)

The spectrum is charge conjugation invariant. In particular, h, = h;.

By (4.5), the action of the conformal group on reduced field bundle operators
is independent of the source and range sectors, and therefore the limit (5.3.5) is
of the form F(e, ima, 1(A)) with a local operation a, » on the local degree of
freedom induced by (4.5), depending only on the charge p. Thus, if the limit exists
on the vacuum, by virtue of the commutation relations F(e, a, 1(A))F(e1, B)2 =
EREGF(f1, BYF(f, ap,2(A)Q with 5(f) = s(er) = [0] it exists also on dense
subspaces of the charged sectors. Therefore it is at least plausible that, in a suitable
sense, (5.3.5) remains valid for e of general type. These objects will have all the
expected properties of conformally covariant point-like vertex operators affiliated
with the reduced field bundle. Since relative localizations as well as the various
conjugation operations of Sec. 3 are preserved in the point-like limit, these vertex
operators satisfy the exchange algebra [12] commutation relations (3.5) as well as
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the algebraic relations (3.9—15). We shall therefore refer to (5.3.5) as exchange
fields.

We have not rigorously derived the existence of the limits (5.3.5). But this is
what is expected at least in specific models, and we shall now restrict our further
analysis to theories where the expressions (5.3.5) are well-defined off-vacuum (in
the sense of distributions).

Definition 5.5. The algebra of unbounded fields (¢4).(z) obtained as off-
vacuum point-like limits (5.3.5) is called the ezchange field algebra Foy. affiliated
with the reduced field bundle Fr.4. We assume that the exchange fields with s(e) =
[0] generate a dense subspace of the Hilbert space from the vacuum, and that
together with the latter also the exchange fields with arbitrary source and range
are well-defined. The conjugation operations F*, F and F apply in an obvious
sense also to the exchange fields. By construction, the commutation relations (3.5)
and conjugation properties (3.9-15), in particular Weak Locality, remain valid for
exchange fields, and exchange fields transform under translations and dilatations in
the canonical way dictated by the scaling dimension d.

Note that the dependence on the specific choice of the local degree of freedom
A will be essentially lost in the point-like limit except for some possible degeneracy
of quasi-primary fields with the same scaling dimension d. E.g., charge conjugation

(<,of;‘))e = do/dp(do/xp)ZeCez (‘Pfiﬁ(A.)R’))a goes along with a matrix between
these internal spaces for conjugate charges, as a relic of the map A — p(A*)R,.

Let us now turn to the CPT theorem for the reduced field bundle and the
affiliated exchange field algebra. For this purpose we have to consider the space-
time inversion x + —z. Note that on the light-cone, space and time inversion
do not have a separate meaning. Since we are mainly interested in the role of
the algebraic structures derived in Sec. 3 from the DHR theory of superselection
sectors, we shall be rather short about the analytical analysis. One may proceed
in complete parallelity with [34] (for local fields in chiral conformal quantum field
theory) or even the standard treatment of the Wightman theory [31, 32].

In a first step one defines vectors @, (wn) . .. 1{w; ) for complex variables with
Imw; > ...> Im w, > 0 (the forward tube) by analytical continuation in the
translation operators in @n(z,)...1(21)R = @Er=2n-)Py (0) ... p(0)e*1PQ.
This is possible due to the spectrum condition.

In a second step one verifies (with the Edge-of-the-Wedge theorem) that in fact
the real Jost points z, > ... > z; resp. ¢, < ... < z; lie in the interior of
a larger domain of analyticity (the extended tube). For this argument, [34] use
local commutativity, but the Weak Locality (Proposition 3.7) is all what is actually
needed.

Next one exploits the extended analyticity and the covariance w.r.t. real scale
transformations to show that complex scale transformations are well-defined on n-
point vectors at appropriate points in the analyticity domain, with the expected
results at the Jost points 0 < z, < ... < zyresp. 0>z, >...> 2,



142 K. FREDENHAGEN, K.-H. REHREN and B. SCHROER

1
V(im)en(zn) ... p1(21)Q = I;((—1)" k7)) - on(—2n) .. .01(—21)Q  resp.
V(=im)n(2n) ... 01(21)2 = (= 1™ &7 ) - pp(=2n) ... 1 (~21)2.

(5.3.7)
Here V(t) = e'*P implement the conformal dilatations. ¢; = (¢4,)c; have scaling
dimensions d; = h,, +n; giving rise to the transformation factors e!"¢ = (—-1)"&,1,/2.
From now on we fix our choice K,,l,/2 = €™ which was free until now (cf. A.1).
Then we have

Proposition 5.6. (CPT Theorem) There is an anti-unitary operator © on Hieq
which implements the CPT symmeiry in the ezchange field algebra:

0 - (p{)e(2) - 07 = (=1)" - ({M)e(~2). (5.3.8)

(cpgA))e carries the conjugale charge and interpolates between the conjugate sectors.
O leaves the vacuum invariant, and commules CPT-covariantly with translations
and dilatations. It is an involution up to a phase:

On, = X, - (5.3.9)

Proof. One variant of the proof (of which we omit all details) proceeds in
analogy to the reasoning in [31,32): consider an n-point function at z; > ... > z,,.
By translation invariance, we may even assume z,, > 0. Then (in evident short-hand
notation)

() on(zn) .. p1(z1)Q)" = (Q, p1(21)" ... n(24)"Q)
= K] *(Q, G (2n) - 91(21)Q)

1

=1k, 2 (Qa ar?(xn) .. Zp_l(xl)Q)
= H,’(—-l)""(ﬂ, cp_n(—z,.) .. .ﬁ(—.’tl)Q .

Here, the second equality is the Weak Locality 3.7., the third equality is the defini-
tion (3.12), and the last equality follows from (5.3.7). Therefore, the replacement
p(z) — (—1)"@(—z) leads to a complex conjugation of all n-point functions at
ordered points in configuration space. The commutation relations (3.5) together
with the symmetry of R-matrices (A.5(e)) imply the same relation for arbitrary
configurations. Thus, defining the CPT operator on multi-field vectors in H, by

O0m(Zm) ... 01(21)Q = (=)™ - Fr(=2Zmm) - .. P1(—21)Q (5.3.10)

(where r(em) = [p]) consistently yields an anti-unitary operator, and by (3.13), ©2
on such a state is given by ILx(r(e:))/x(s(e:)) = x,-

We want to present an alternative proof which is closer to the Tomita-Takesaki
modular theory. It is inspired by [33] and parallels the more detailed elaboration
for the vacuum sector in [34, 39].
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Define the antilinear operator © on a dense subset of H, by

0 : (pi)e(@)2 = (1) - (V) (~2)0.

Clearly, © commutes CPT-covariantly with translations and dilatations, and by the
form (5.3.3) of conformal 2-point functions and (the point-like limit of) the Weak
Locality relation (5.3.1)

(0¢1(2)92, Op2(y)Q) = (Pi(—2)2, Pa(-y)2)
= w389 (1(2)Q, P3(y))
= (p2(1)Q, 1(2)Q) -
Therefore, © is anti-unitary on a dense subspace and can be uniquely continued
to an anti-unitary operator on Hreq. The point-like limit of (3.13) implies (5.3.9).
Now, let us relate © to a modular conjugation. Let ¢ > 0 and F € Fred(R4) a

suitably regularized operator [34] such that V(¢)F$ has an analytic continuation in
t. Then

(V(m)FQ, p(2)Q) = (FQ, V(in)p(2)Q) = (—1)"x} (FQ, p(~2)Q)
(-1)"x; ¥ (p(~2)Q, FQ) = x; * (0p(z)0, FQ)
k7 1(O'FQ, p(2)0)

where we have used again Weak Locality (5.3.1). As in [34], we may conclude (with
the operator x!/? defined by its eigenvalues n},/ % on H,)

V(in)FQ = k20*FQ for F € Frea(Ry).
Now, consider the antilinear unbounded operators

Sy : F(e, AU+ F(e, A)Q = \/d,/x,  F(&, p(A*)R,)Q for F € Frea(Ry)

(5.3.11)

defined on dense subspaces by the Reeh-Schiieder theorem (recall froin (1.4) that

Frea(O)Q = ®ala, mo(Uy) - mo(A(O))2) with suitable unitary charge transporters

Uy, therefore 2 is cyclic and separating for the sets {F(e, A) € Frea(R4)|s(e) = [0]}

if the same holds for A(Ry ) in the vacuum sector). The Weak Locality (5.3.1) shows

that S* is defined on the domain of S; where it coincides up to a factor with S,

and vice versa:

k7S, S, &MS_cC Sy

Having densely defined adjoints, Sy are closable. The domains of definition (5.3.11)
are cores for the operators V(xin). Therefore, as in [34], the preceding calculation
shows

Proposition 5.7. Let Sy be the closures of the operators (5.3.11). Then their
polar decompositions S = J - AY? are

Se =630 V(ir), S =x"%0 VY(=ir). (5.3.12)
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The modular conjugations Ad; map the exchange field algebras Fexc(R+ ) associated
with the half-lines into each other, and the modular transformations Ada: are the
real scale transformations leaving Fe (R4 ) invariant.

It remains to show (5.3.8). For this purpose we compute for, e.g., 1 > z3 > 0

Opa(z2)p1(21)2 = K3 S_V(im)pa(z2)p1(21)Q
= kF (-1 7 (mie) - p(22)er (a0
= (=)™ *3p(—22)P1(—21)R
=(-1)™ +"’ﬁ(—z2)nl_%GV(—i'rr)gpl(-a:l)Q
= (-1)"*P2(~22)Op1(21)Q2,

where we have used Proposition 3.8 in the third equality. The same result holds
for 1 < z3 < 0, and by translation covariance for z; # z2. By comparison, we get
(5.3.8).

The Proposition 5.7 proved en passant shows that the charge conjugation op-
eration F + F gives rise to a generalized Tomita-Takesaki theory, with a direct
geometric interpretation of the modular structure. In fact, the operators Sy may
be identified with well-known relative Tomita-Takesaki conjugations of the observ-
able algebra w.r.t. suitable pairs of vectors in H, and H;. The new result is their
action on the interpolating exchange fields. It is tempting to ask whether such a
theory can be directly established in a generalized von Neumann algebraic setting,
based on a “twisted * conjugation” (the present operation F + F satisfying (3.13 +
16)) and giving rise to the “twisted commutant” without resorting to the underlying
algebra of observables, locality, and exchange fields.

Let us now turn to the “universal” reduced field bundle Fred yniv on the circle
(resp. in 2 + 1 dimensions). It is again defined by (1.2) but with A € Ayniv, while
for definiteness, all po € Areq should be chosen localized in the same proper interval
I and the bases {T.} are local intertwiners in .A(I).

Due to the existence of globalintertwiners, the notion (1.4) of “localization” is no
longer equivalent to (1.3) in Fred univ- Moreover, since there is no global left/right
distinction, the status of the commutation relations (3.5) must be re-examined.
(This observation does not invalidate our derivation of Proposition 5.4-5.7, since
although we have exploited the covariance (4.1) of the endomorphisms under the
full M6bius group, the reduced field bundle was only used w.r.t. some fixed point
at infinity, where the commutation relations (3.5) and their consequences (3.14 +
15) hold in the naive sense). In fact, the discussion in Sec. 5.1 and 5.2 suggests that
the correct notion of localization should be linked to the specific charge transporter
U : p — Ady o p which satisfies (1.4), leading to localization in a covering space.

By (4.5), the space-time covariance is implemented in Fred yniv- Fred,univ COD-
tains all Freqe (€ Y I) as subalgebras. These are stable only under conformal
transformations leaving £ invariant. Yet, elementwise the conformal covariance is
implemented for a neighbourhood of unity in the (covering of the) Mébius group,
as long as the transformed localization intervals do not move across £.
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In order to understand the action of the full Mdbius group, and to convince
ourselves that the left/right ambiguity w.r.t. different £ € S! does not lead to any
contradictions on the circle between commutation relations (3.5) valid in either
Fredae, let us study again the rigid rotations of S . For instance, applying a, twice
according to (4.5) yields

aye(F(e, A)) = F(e, Y, - A) with Y, := Y, (7)ax(Y,(x)). (5.3.13)

As it stands, this operator is in general not contained in any Freq¢, since Y, is a
global element of A not contained in any local algebra. But (5.3.13) can be identified
with a localized reduced field bundle operator as follows. Note as before (with
I,J =nl, ¢, ¢ and Vi as in Sec. 5.2) that Y,(7) = ™2V}, and ax(Y,(7)) = V_.
Therefore, the global self-intertwiner Y, in (5.3.13) equals

Y, =k, -V,.

Since by (5.2.3) V, is given in the representation mops by the monodromy, and T,
diagonalize the monodromy (Lemma 3.3), the action (1.2) of agx(F(e, A)) on Hreq

equals (e of type (a, p, B))
age(F(e, A)) = (kg/Ka) - F(e, A) (5.3.14)

in accordance with the definition of aj : Ady(j) and the values of U(27) in the
source and range spaces. This is of course the periodicity expected for conformal
exchange fields [12]. Now let F} € Freae(I) and F3 € Frea¢(nI). Then Fi € Freqe(I)
and Fy = ay.(G2) where Gy € Freqe(7I). Since w.rt. £, «I lies to the right of I,
the commutation relation (3.5) between Fy and F; within Freq¢ involves R(+), and
similarly the commutation relation between G3 and Fy within Freq¢ involves R(-).
In view of the periodicity (5.3.14), these two relations are compatible iff (3.6) holds:
in fact, this type of argument for exchange fields originally led to Proposition 3.2
as a restriction on the R-matrices of conformal exchange algebras in [12], see the
remark after Proposition 3.2.

By the preceding calculations, we are led to the following definition. Choose an
interval J; C R (of extension < 27) of the universal covering R of S* which projects
onto I C St.

Definition 5.8. Let J C R be an interval (of extension < 27) of the universal
covering R of S1. For p € Areq the pair (p, A) is said to be localized in J if there
is a local operator C € A(I) such that all F(e, A) with charge p are the translates
of F(e, C) € Frea¢(I) under aj, where §(Jo) = J.
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In other words, A is obtained from C by a sequence of “small” transformations
as in (4.5) which sum up to §. This notion of localization is consistent with (1.3)
in every Freq¢- It does not refer to the individual operators F(e, A) € Fred,univ for
which a source- and range-dependent periodicity holds, but to the collection of such
operators with common (p, A). (These are essentially the elements of the original
field bundle [4].) The covariance (4.5) lifts to these pairs in the obvious way. The
commutation relations (3.5) are then globally valid in the form

Proposition 5.9. Let (p1, A1) and (p2, A) be localized in intervals J, and
Ja which project onto disjoint intervals on the circle. Determine N € N such that
Ji+27N < Ja < J1 +27(N +1). Then

F(eg, A2) - Fler, A1) = Y RF2H(N) - F(f1, Av) - F(fa, A2), (5.3.15)
Jfiofa

where RP2:5H(N) = mo[Te, T, pa(en(p2, p1))Ts,Ty,] are matriz elements in the vac-

1
uum representation of the generalized statistics operators

en(p2, p1) = P1(YPIZ)€(P2, P1)Yp—,N 1 p2p1 — p1p2 -

One has (notation as in Proposition 3.2)

N
€20 KoK eg30
RyG(N) = (———KMZ) R3H(H). (5.3.16)
Clearly, N = 0 and N = —1 correspond to the ordinary statistics operator and

its opposite, with matrices R(+) and R(—). The other ¢y are in general global
operators. Therefore the above self-intertwiners T, ... Ty, : p, — py will be scalars
only if evaluated in my. This proposition can be directly proven, if one transports
both F; by suitable powers of as, into some Freq¢ and controls these translations
by the formula (5.3.13). A common shift by agxa turns out immaterial by the
identity following from (5.2.3) (but not from (2.2) which does not apply to global
intertwiners!)

P1(Y2)Y1e(p2, p1) = €(p2, p1)Yapa (Y1) .

Note that in view of (5.2.3), the evaluation of £y in wpp, gives the representa-
tive of a complicated braid (¢,0201)Vea;(02)~Y involving an extra generator oy
corresponding to a “zero’th” string for the source sector.

The geometric reason for this observation is that the unitary operators p*~!
(¢(p, p))(i = 1...n — 1) and V, = «;'Y, in fact represent the braid group of the
cylinder, as one should expect for a theory over the circle. Namely, they satisfy the
relations of o; as in B, and 7 : 70; = 0;7(i # 1) and 701707 = o17017. (Proof:
e(p, P)V,oe(p, p) = p(V,), and V, commutes with p(A).) Putting { = op_1...017,
these relations translate into 0;¢ = (oi4+1 (i = 1...n — 2) and (%0y = 0,-1(?,
the defining relations for the braid group of the cylinder. On the other hand, the
above relations of 7 are those of o2 within B, 4 1. Therefore the subgroup of By, 41
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generated by o; (i = 1...n — 1) and o2 coincides with the braid group of the
cylinder. These remarks generalize to the colored groupoids (for different charges
involved) without difficulty.

By the Definition 5.8, a pair (p, A) may be localized in several intervals with
the same projections onto the circle, whenever some power of Y, is trivial. The
spectrum of Y, in the representation myp, is exhausted by xg/k,, [ps] contained
in [pqp]. Therefore, if (kg/Kko)" = 1 for all sectors a, g interpolated by p, then the
fields of charge p rather live on an n-fold covering of S!; in particular observables
live on the original circle since Yy = 1. The commutation relations (5.3.15) remain
unambiguous since (5.3.16) have the same periodicity.

6. Conclusions

In spite of its somewhat uncomfortable appearance, the reduced field bundle
exhibits all the algebraic structures necessary for a decent quantum field theory of
charged fields. At present, it is the only algebra available to describe charged fields
with non-abelian braid group statistics in the generic case.

Prominent among these algebraic structures are a charge conjugation operation
and the property of Weak Locality. They are derived from the DHR theory of super
selection sectors with finite statistics, and illustrate the power of this approach. If
space-time covariance is explicitly postulated, one may derive the Spin-Statistics
theorem up to a sign, and if in addition affiliated point-like fields (the appropriate
starting point of a Wightman axiomatic approach) exist on- and off-vacuum, the
true Spin-Statistics theorem and the CPT theorem for charged fields follow along
the usual lines. The often ignored remark in the textbooks that for CPT only
a genuinely weaker requirement than locality is actually needed, deploys its full
significance in the present context.

As mentioned in the mtroduction, the reduced field bundle also exists as a
less familiar but physically equivalent description of four-dimensional theories with
Fermi and Bose fields transforming under a global gauge group responsible for the
super selection sectors, e.g., in the form of parafields [28]. It can be more directly
obtained with the methods and results of the Doplicher-Roberts reconstruction [24),
where it arises as the gauge invariant remnant after the Clebsch-Gordan coeflicients
for products of irreducible tensor operators have been removed. The structure
constants D and R then coincide exactly with the 6j-symbols of the gauge group.

This observation is at the basis of the hope to identify the quantum symmetry
responsible for superselection sectors with braid group statistics by the study of the
reduced field bundle. Although we did not discuss the issue of quantum symme-
try, we hit upon its footprint again and again —in the guise of numerical identities
among structure constants or of remarkable invariances of Markov traces giving rise
to topological invariants of 3-manifolds, and most prominently in the structure of
the center of the universal algebra and its representations. While some relation to
quantum groups is undeniable, we insist in the problems which arise when quantum
groups are to be implemented as symmetries of operator algebras acting in Hilbert
space.
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As in local quantum field theory, the CPT theorem for charged fields is closely
related to the Tomita-Takesaki theory of modular conjugations. We have identified
the appropriate conjugation operation, the polar decomposition of which yields —in
a particularly simple kinematic situation — the anti-unitary CPT operator as well as
a geometric group of modular automorphisms. While the Tomita-Takesaki theory
has proved to be an extremely powerful tool in von Neumann algebra theory in
terms of extremely simple algebraic structures (the operator adjoint and the com-
mutant), the present “twisted” generalization refers largely to the rather involved
superselection structure constants. Therefore, the understanding of the underlying
abstract von Neumann algebra theory seems intimately linked to the understanding
of braided categories.

The question to what extent the general structures analyzed in this paper are
realized in models was not discussed. Certainly our results match the general find-
ings in models of chiral conformal field theory. A full identification requires a lot of
work and at the moment has led only to a partial confirmation. For various models
of abelian [5] and non-abelian [41] current algebras, the axioms of the operator alge-
braic approach have been verified and the localized automorphisms leading to simple
sectors (statistical dimension = 1) were found. The main limitation at present is the
difficulty to write down localized endomorphisms for non-simple sectors. Here, some
progress is made by considering the observables as a subalgebra of some larger alge-
bra (e.g., the chiral Ising model expressed in terms of the Majorana algebra [27] and
generalizations thereof [40], or “conformal embeddings” of higher-level non-abelian
current algebras into those of level 1 [41]), and to study automorphisms of the latter
in restriction to the former. More generally, it seems promising to generalize the
theory to positive maps [42] which are much easier available than endomorphisms.

The “Casimir operators” corresponding to non-simple sectors which are pre-
dicted in Sec. 5.2 were not known before even in completely solved models like the
minimal models [13]. It is an interesting test to try and find these central elements
also in the conventional approach. This should also lead to a more intrinsic under-
standing of the underlying character structure for the chiral theory (i.e. not referring
to the extrinsic two-dimensional principle of SL(2, Z) modular invariance), and ex-
plain why it is to be expected also in three-dimensional theories with “string-like”
chaiges.

Appendix
A. Structure Constant Symmetries

The numerical square matrices 7,.- and #¢ occurring in Sec. 3 are “coupling con-
stants” for the charge conjugation structure of the theory. They may be regarded as
matrix elements of linear and anti-linear maps between different intertwiner spaces
which are related via charge conjugation and by (2.11) have the same dimensions.
They depend covariantly on the choice of orthonormal bases {T,} (as indicated by
the index position) and R,. For Nlﬂ = 1, the phases of the intertwiners may always
be chosen such that § = +1 and 5 = ++/d,/d,ds with intrinsic signs for pseudoreal
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sectors involved. Some of the corresponding symmetries A.2 and A.3 have also
been obtained in the algebraic setting by Frohlich et al. [7].* We give here a list of
relations which are helpful for algebraic transformations in the reduced field bundle,
as well as related symmetries of R- (and D-)matrices. These relations are more
or less easily derived from the fundamental identities (2.2-4), their consequences
(2.6), (3.7 + 8), and the orthonormal choice (3.1). Some proofs can be found in the
literature [20,43].

As an illustration, we present the algebraic background underlying the matrix
Neer. There are similar structures for 85 and (.;. Consider the linear mapping 7
from the intertwiners: p, — papgs to the intertwiners: p,pg — po:

T — pa(R;';)Tc =: Z Neer Ton € Neer = pa(R;;)TeT,- . (A1)

It induces an anti-linear mapping between the spaces spanned by 7T, and T,., with
matrix elements 7n..-. The unitarity of the square matrix 7..» up to the factor
dy/dads (see (A.4(a)) below) is just the expression of the algebraic orthogonality
for e, f with fixed common charge and range, but free source:

Pa( BE)T.T] pa(Rg) = (dp/dady)bey - (A2)

This relation follows from, and is actually equivalent to (3.8), since applying ¢, and
then omitting po(R”) ... pa(R) are trivial operations with scalars. The symmetry
(A.4(b)) reflects the involutivity n(n(T)*)* = (1/dgxs) - T.

Definition A.1. For ¢ of type (a, p, B), let e* be of type (B, p, ), é of type
(8, p, &), and & of type (@, p, B). Define (with some fixed choice of the square roots
of the statistics phases).

Nees ‘= Pa(R;)Te Tee

05 = Vv Kpkp/Ka - RéT:Pa(E(PB, p)T:)Ra
= \[Ka/Kpk, - R5TC pale(p, p5)"T:)Ra
Coor = TeaE Neer = /Kpka/rp - RyRupale(pa, PY)Teps(Te)Rs.  (A3)

The two definitions of # are equivalent in view of Lemma 3.3.

Lemma A.2. The following identities hold (summation over repeated indices;
e of type (o, p, B)):
(a) nce‘(ﬂfe' )‘ = (dp/dadp)éef

(b) Neer = Xp(dp/da) *Mere

4t is stated in [7c, Theorem 5.8] that x, can always be put to +1 by adjusting the phase of
Rp : id — pp relative to that of R, : id — pp. But for self-conjugate sectors, there is no such
freedom since Ry, = Rp. Thus the value of x, is intrinsic and may be —1 (pseudo-real sectors).
Consequently, in the presence of pseudo-real sectors, one cannot have all n-matrices simultaneously
positive diagonal as stated in [7c, Theorem 5.16 (ii)] (cf. (A.4(b)) below).
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(c) 05(61)" =65

(d) 65 = (xs/xa) - (65"

() Cesl(Cep)” = (dp/dad,)bey

(f) Cez = (Xan/Xﬂ) - Cee - (A'4)

Lemma A.3. There are symmelries of the R- and D-matrices.

(2) Mege, - RP2(E) = REZ2HF) mp

(b) MegesMeges - R}::;;(:t) = R{?:ef;l (£) - ns7 0083 52
(€) Tleaey - D22t = [DE%F I* - my e

(d) 05165 - R2°2 () = Ry (%) - 0707

(e) CererCeses - R;_::_e;_; (:t) = [R;::;; (:F)]* ’ Cflf_xcf:f_z
(f) Celélceza2 ) D}?gel = [D;?:Gl T CffCCE .

(A.5)

We omit the proof of these symmetries from the coherence equations (2.2-4) and
(3.1). For example, for (A.5(a)) apply pg to the identity R}pi(e(p2, p1)) = p2(R;)
g(p2, p1)* and take matrix elements in path space as in Sec. 3 for the polynomial
identities. Similarly, (c) is obtained from the defining relation p1 (R5)Ty = ny5+T7..
For (e,f) see [43]. We omit further symmetries related to e — & of type (p, a, 3)
which are not relevant for the reduced field bundle.

The symmetries A.3. are not necessary for proofs in the present article, but arise
a posteriori as consistency relations among the exchange algebra and the adjoint
and conjugation structures. In particular, (A.5(e, f)) are the CPT symmetry (charge
conjugation, space-time inversion, and complex conjugation) pre-existing in the
DHR theory at the level of structure constants, without assuming covariance.

B. Invariants of 3-Manifolds

In [3] we have described the construction of link invariants from irreducible DHR,
endomorphisms. The representative ¢,(b) of a braid & € B,, in terms of statistics
operators e(p, p) is a self-intertwiner: p" — p™. Since the iterated left-inverse ¢" is
a positive normalized trace on the commutant of p”, the scalar function tr, = ¢"o¢,
extends to a positive normalized Markov trace on B, which can be rescaled to be
invariant under the Markov moves, and therefore gives rise to a link invariant.

We shall now present the analogue of the Reshetikhin-Turaev construction of
topological invariants of compact three-dimensional manifolds [44] and a similar
proposal by Wenzl [45]. Our construction is in terms of mixed statistics opera-
tors £(pa, pg) involving all endomorphisms of A,eq, i.e. all superselection sectors of
the theory. We have to assume Areq to be finite (“rational theories”). The con-
struction below formally looks like a trace “tr, .~ w.r.t. a “regular representation
Preg =~ Dadapa” (see below). Note, however, that for non-integer dimensions d, an
endomorphisms preg does not exist. A promising object to study might be the state
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Wreg(A) = Ladawqa(A). In [45] an object with the correct relative multiplicities is
obtained in a limit of infinite powers of some generating sector.

We expect the superselection sectors and their statistics to be a dual struc-
ture w.r.t. an underlying quantum symmetry [24,25]. In particular, the R- and
D-matrices play the group-theoretical role of 6j-symbols associated with commu-
tativity and associativity of tensor products of representations of this—in general
unknown —symmetry. Therefore, we consider the invariants constructed below as
characterizations for the full-fledged local quantum field theory and its intrinsic
quantum symmetry by invariants labelled by topological objects [46]. The values
of the invariants are in principle observable quantities (which might, e.g., be mea-
sured in plektonic scattering processes), providing information about the internal
symmetry and its correlation with space-time structures. This point of view is com-
pletely opposite to the original motivation of [44, 47} which consider their invariants
as a scheme to define a variety of “topological field theories” labelled by quantum
symmetries, in particular Witten’s topological Chern-Simons theories [48].

First recall [3] that the mixed statistics operators give rise to a unitary repre-
sentation of the groupoid of colored braids, where the colors take values in Areq.
For a coloring A = (p1, ..., pn) of a braid &, (A, b) is an intertwiner: py ---pp —
Pr=1(1) - - Px=1(n), Where ™ € S, is the image of b € B, under the natural homo-
morphism of the braid group onto the permutation group.

Now consider the ribbon braid group RB,, O B, which has besides the braiding
generators o; of B, twist generators 7; (¢ = 1...n) with relations 7;7; = 7;7; and
T;aiil = a,?ﬂn.,,l. RB, is the semidirect product of B, with Z", where b € B,
acts on Z" by the permutation 7. The above representation of the groupoid of
colored braids extends to a representation of the groupoid of colored ribbon braids
by the assignment 7; — &, if p is the color of the ribbon to which the twist =;
applies. Again, the representative £(A, 3) of a ribbon braid # with coloring A is an
intertwiner: py ... pn — Pr-1(1) -« - Pr—i(n)-

For a given ribbon braid 8 € RB,, consider the cycle decomposition of the associ-
ated permutation 7 € S,,. If the coloring A is constant on the cycles (i.e. pri)y = pi),
then e(A, () is a self-intertwiner, and is mapped into a scalar tr(A, B) by the left-
inverse ¢, ...¢;. This operation is meaningless if A is not constant on the cycles.
Note that geometrically, if a (ribbon) braid is closed into a (ribbon) link, then every
cycle of the permutation corresponds to a component of the link, i.e. A constant
on the cycles are in fact colorings of the components of the link. The map tr(A, 3)
is invariant under groupoid conjugation with any colored ribbon braid, since the
same holds for the restriction to colored braids [3] while the phases &, for the twist
generators cancel on both sides.

We observe that the generalization of tr, for reducible p does not yield a Markov
trace on Bo,. However, if tr, is extended to RBy by 1 +— XokaEq (the unitary
part of the statistics parameter (2.9)), then tr, is a ribbon Markov trace and yields
an invariant of framed links. It has the following decomposition in terms of the



152 K. FREDENHAGEN, K.-H. REHREN and B. SCHROER

irreducible subsectors [p,] contributing to p with multiplicity N5 (cf. [46])

tr,(8) = d;" ) (H (dae)' Ny (°)) -tr(A, B), (B.1)

A

where the sum extends over all colorings of the cycles, the product extends over
all cycles, I(c) is the length of the cycle, a(c) is the color assigned to the cycle,
and d, = £,N;d,. We have displayed this formula in order to give the following
definition an intuitive interpretation in terms of “peg”, although a field-theoretical
meaning of such an object is missing.

We define a trace RB,, — C by replacing in (B.1) the multiplicities N;¥ by da:

tl'(,B) =D™"- Z <H(da(c))l(c)+1) : tl‘(A, ﬂ)! (B'2)

A c

where D := Z,d? is like the “statistical dimension of preg” . This functional has
remarkable properties.

Proposition B.1. tr eztends to a normalized trace on RB,, satisfying

(a) tr(B182) = te(B)tx(B2) if B1, Be are disjoint
(b) tr(Bon) = D' -tr(Br) if B € RB,
(c) tr(e®B) = DF .tr(r)tx(8) if B € of t(RBy)
(d) tr(B71) = tr(B)* .

Here, o*) = (ok...02k-1)(Ok-1...02k-2)...(01...0k) is the “k-fold cabled”

braiding generator. « is the shift endomorphism o; — 041, % = 741, “Dis
joint” means that 8; € RB, and B; € a™(RBy) or vice versa.

(B.3)

Proof. Except for (c), all the above statements follow from the corresponding
properties of tr(A, 8). Note that for disjoint braids the sum over coloring factorizes,
and that every unbraided untwisted ribbon (corresponding to a cycle of length 1)
contributes to the sum a factor £,d2 = D.

It remains to prove (c): Let 8 = a* + (). Since a|rp, is inner in RBw, tr(8) =
tr(8'). Let eo(8') denote the self-intertwiner: py...p, — p1...p, corresponding
to the coloring A. As compared with 3, 3¢*) has one more cycle of length 2, and
for every i = 1...k — 1 the length of the cycle of #' containing p; is increased by 1
in Bo(®). Therefore,

k-1
tr(8e™)) = D" *1 3" @ T (da())' @+ [T di - tr((A, p), Be®).
c i=1

Ay

We evaluate the trace on the rh.s. (with the abbreviations pg = p;...pr-1 and

¢g = br-1...41):

bn ... Oxdedodadslrrer(ea(B’)) - e(pre, PPo)]
=¢n ... Brdolea(B') - d,008,(p(e(p, po)e(p, p)P(e(pe, ps))P(c(ps, P)))].
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The intertwiner multiplying €4(8') in [...] can be simplified to

Ao - 0008 (e(p, pe)P(e(ps, P8 ))E(Ps, P)]
=X, - dodelpe(c(pe, P))e(pPe, Po)ra(e(p, pe))l = A, - ¢ole(pe, P)Aoee(p, Po)] -

Now, A, = &,/d, and by (2.9) Apy = (1/d1...dk-1)Eek, T T, where T; are bases
of path intertwiners: ¢ — pg, 0 € Areq. We proceed with (2.2) and (3.7 + 8)

bole(pe, P)TeTE e(p, po)] = ¢olp(Te)e(o, p)e(p, 0)p(T¢)]
= TE¢p[€(67 p)e(p, 6)]716‘ = TfEaN:p(Ka/KaKp)(da/dadp)j? .

Therefore, collecting the terms,

tr(ﬂg(k)) = p—n-k-1 E (H (da(c))l(c)+1> Z (Z N:p ke d:;d,,
A ¢ € o, p o

. ¢n R ¢1(5A(,3')T6Tg) .

)

The essential point is that the sum over a, p is independent of the range o of ¢:

d;' ) Kada 3 Niad, =d7' Y Kadedoda =Y Kad? .
o P o

o

Therefore the sum over { can be carried out: 3° T Ty = 1, and we get

tr(8o*)) = D*-1 (E nadz) -tr(B) .

Finally computing tr(r) = D~1X,k,d% establishes (c).

Corollary B.2. For 8 € RB,, denote by c the number of cycles of the associated
permutation. Assume tr(t) = D1, kqd% # 0. Then the functional

I'(B) := D™ °tr(r)~° - tr(B) (B.4)
is nvariant under the moves

(C) RB, 3 B182 < P21 € RB,
(M) RB, 3 fr5' & Boi' € RBn iy
(K) RB, 38— ot (B) o™ 3RB, ;141 (n>k—1). (B.5)

The rescaling (B.4) violates the compatibility with RB, C RB,, ;1. Therefore,
I is not a trace on RBo. The cyclic and Markov invariances (C) and (M) make T a
(multiplicative) invariant for ribbon links (framed links). Now, every 3-manifold M
can be obtained by “surgery along a framed link” embedded in S3, and two framed
links give rise to topologically identical manifolds iff they are related by a sequence
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of Kirby moves (K) on the closures of ribbon braids [49, 44]. The Kirby moves given
in [44)] are rather

(K'Y RBy3B e a(f (01...0k2) tmy...1_1)

c01...0k-10k—1...0171 € RBn...l
differing from (K) by a sequence of (M) moves. We conclude:

Corollary B.3. The functional T’ is a topological invariant of 3-manifolds.

A comment is in order for the condition tr(r) # 0 in B.2. In [20] the formula
|Eakad?|? = £,d2 was proven in the case where there are no “degenerate” sectors
besides the vacuum, i.e. sectors which have trivial monodromy with all sectors of
the theory. The same calculation in the degenerate case yields

Y radt| = (gaj df,) . (zm: nmdz,,) ,

a

where the sum X,, extends over the sub-category of degenerate sectors. The latter
sum vanishes if there are any fermionic degenerate sectors, and equals 1 iff the vac-
uum sector is the only degenerate one. Therefore, we find that tr(r) = 0 iff there are
fermionic degenerate sectors (in particular in fermionic theories with permutation
group statistics), and the condition |tr(7)|? = D! is equivalent to the absence of
degenerate sectors. This purely numerical condition on the statistical dimensions
and phases (cf. Cor. 5.2(i1)) in turn, is equivalent [20] to Verlinde’s modular algebra
[19] satisfied by the matrix S given by the DHR theory in terms of monodromies
and the diagonal matrix T of statistics phases.

We note that, in contrast to the original construction [44], we do not require
invertibility of the matrix S. But in the degenerate case our invariant gives less
information about the 3-manifold. For example, in the bosonic permutation group
statistics case, the trace is just tr(8) = D°™", and the invariant T is trivial.

We remark that the quantum field theoretlcal coupling constants Dg"h of the
DHR theory also give rise to an invariant of 3-manifolds of the Tutaev-Vlto type [47],
generalized to the non-self-conjugate case with unrestricted multiplicities N} g- The
partition function is a sum over tetrahedra with oriented edges labelled by po € Areq
and faces labelled by intertwiner bases e according to the labels of the surrounding
edges. Every tetrahedron is weighted by a 6j-symbol (o< D-matrix element), the
edges are weighted by d,, and the vertices by D~!. The partition function is in
fact independent of the edge orientations, since the group S, of (admissible) charge
conjugations on the edges is implemented by the symmetries of 6j-symbols (A.5(c))
and further identities of the same type related to e — & of type (p, @ B). The
Racah-Elliot relations for the D-matrices (see Sec. 3) guarantee invariance under
subdivisions of tetrahedra. This invariant W is always non-trivial: W(S3) = D1,
W(S? x S!) = 1. In particular, a relation W o |T'|? may be expected only in the
non-degenerate case. We omit the detailed combinatorics.
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