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We discuss the concept of Quantum Symmetry in quantum field theory, and in particu- 
lar the role of the gauge principle. We present a scheme how quantum symmetries can be 
realized in a Hilbert space, and sketch its construction from the theory of superselection 
sectors of the gauge invariant (observable) quantities. The approach is independent of 
(Drinfeld's) quantum groups. 

1. Introduction 

Four ingredients seem indespensable for a quantum symmetry in quantum field 
theory. First, the dynamical degrees of freedom are described in terms of a field 
algebra jr. Second, there is a symmetry g (e.g., a group, a Lie algebra, or a Hopf 
algebra). The elements of the symmetry g act on ~'. For this action to deserve 
the name "symmetry" it must preserve the algebraic structure of 5 which encodes 
the underlying physical interpretation of the field operators. On the other hand, 
acting with different elements of g will respect (or define) the algebraic structure 
of g (as a group, Lie algebra, Hopf algebra, ... ). 

Third, if we do not want to depart from the probability interpretation of quan- 
tum theory, we need a Hilbert space ?t on which both the field algebra ~r and the 
symmetry g are represented, as well as the star operation (adjoint) in order to guar- 
antee real expectation values for the self-adjoint operators. These representations 
implement the abstract action ag(F ) of g on ~" in terms of commutation relations 
among the corresponding representing operators, e.g., for tensor operators r 

or 

gr -1 -- ag(r -- EAbjrji(g) (1.1) 

Adx(r = ~_~ zar = a=(r --- ~ Cjrj i(z)  (1.2) 
a j 

in the case of group resp. Hopf algebra symmetries. Here rjl are finite-dimensionM 
matr ix representations of g and y~. za | z a = A(z) and S denote the coproduct 
and the antipode. These equations may equivalently be written in the form 

x- r - ~ Cj" aji(x) (1.3) 

J 

where aji : = (rji | id) o A are homomorphisms of g into the F'valued matrices. 

*) Presented at the Colloquium on the Quantum Groups, Prague, 18-20 June, 1992. 
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The fourth, and most important, ingredient is the gauge principle: among the 
elements of Y', the action of the symmetry G distinguishes the gauge invariant 
elements. This subalgebra .4 = 5 ~ contains the observable part of the theory. 
The gauge principle brings with it the possibility of superselection sectors: suppose 
4~ E 7f to be a gauge-invariant vector, and ~i to be some tensor multiplet in .~" 
transforming according to (1.1-3) in some nontrivial representation r of ~. Then 
all vectors of ~f of the form Ar where A E -4 is gauge invariant, are also gauge 
invariant, while all vector multiplets A~bi~ transform in the representation r. In 
particular, the subspaces ~/0 = -4~ and 7fr = (~i-4~bi~ of 7f are disjoint, and in 
general inequivalent, representation spaces of .,4. In other words: they belong to 
different superselection sectors of the observables. 

One could now address the classification problem: find all quadruples (Y', ~, 7f, -4 
= Y'~) such that -4 is a reasonable theory of physical observables. At this point 
one should add further physical criteria like Locality, Poincar6 covariance, or posi- 
tivity of the energy spectrum in the Hilbert space 7f. In particular, -4 describes a 
local theory if it is generated by its subalgebras of local operators corresponding to 
measurements of finite laboratories, which commute with each other at space-like 
distance. Requiring locality for the gauge invariant operators yields a localization 
concept for the charged fields: F E ~" is said to be localized somewhere if it com- 
mutes with all observables at space-like distance. This does not imply that localized 
fields are themselves local: Fermi fields anti-commute, but commute with the gz 
invariant operators of even Fermi number. More interestingly, a Z jr symmetry 
admits anyonic space-like commutation relations among fields of charges oc, 

~ba(z)~b~(y) = ~(y)~a(z) e+2"iQ~ (1.4) 

and still such fields locally commute with the ZN invariant observables. Here 
Q~ = ra(Q) = 0, 1 . . . ( N  - 1) are the gtr charges of the involved fields, thus 
expressing the coefficients in terms of symmetry operators. We are most interested 
in the non-abelian generalizations of anyons: plektons. 

Instead of aiming at a full classification of possible quantum symmetries, we 
shall be less ambitious and present a scheme for plektonic field theory [1, 2] which 
applies to a large class of observable algebras with superselection sectors. To be 
precise, we pose ourselves the following problem: 

Let a specific quantum field theory of local observables, .4, be given, and there- 
fore in principle also the knowledge of all its superselection sectors (i.e. equivalence 
classes of representations with positive energy, possibly distinguished by further 
physical admissibility criteria). Then we ask for a triple (5,  ~, 7-/) which repro- 
duces-.4 = ~ and all its sectors by the gauge principle as described above. 

This problem was solved very comfortingly ~3] in the case of permutation group 
statistics. In this case, the symmetry can always be established as a compact group 
of automorphisms of the field algebra, unitarily implemented on the Hilbert space. 
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2. Quantum symmetry via bimodules 

We shMl present below a construction of the action of a quantum symmetry 
in terms of bimodules of a specific algebra ~ = .~4. Before we enter into the 
construction, we want to describe the scheme abstractly. 

The algebra .M is the universal hyperfinite type II1 factor (in the classification of 
von Neumann algebras: i.e., there is a trace state tr on f14 which on the projections 
of .~4 can take all values between 0 and 1). It is only the class of the relevant 
bimodules of this algebra which distinguishes different theories. Note that every 
endomorphism p : .M --* .~J induces a bimodule action of .M on itself by left 
and right multiplication with p(m). This bimodule, coinciding as a space with 
. ~  will be denoted by J~p. The central point in our construction is that the 
analysis of the superselection sectors of a given local theory distinguishes the class 
of endomorphisms of .b~ relevant for the quantum symmetry in 1:1 correspondence 
with the sectors. 

The bimodules fl4p are in general not irreducible. In particular, every pair of pro- 
jections in .b4 commuting with p(.A~) defines an invariant sub-bimodule E~./~4pE/j. 
It turns out convenient to pick p~ to contain all equivalence classes of relevant 
irreducible endomorphisms p~ precisely once (i.e., there corresponds a unique mi- 
nimal projection E~ in the eommatant of p~), and to distinguish the projection 
E0 referring to the trivial endomorphism P0 = id. Then .M~ = Ec,./Vtp~Eo exhaust 
the irreducible bimodules. It is further convenient to use a natural identification 
of .M~ with linear spaces ~ under which the two-sided action on .b4~ given by 
E~p~ (m)xp~ (n)Eo turns into pa(m)kn. More generally, for all relevant endomor- 
phisms one can introduce ICp such that 

ICp 9 k ~ p(m). k .  n (m, n E jk4). (2.1) 

Now let {b~} denote a finite left basis of/Cp such that every element k E/Cp has 
an expansion 

k -  E b l  .(bi, k) (2.2) 
1 

with an .M-valued inner product (k, I). Then the action (2.1) is rewritten 

p(m) .bl - -  E b j  " p~1(rn) (2.3) 
J 

where pjI(m) = (bj,pa(m)bl) are a matrix of coefficients in ~ .  In fact, Pmat = 
(PJI) is a homomorphism from J~ into the fl4-valued matrices, and the number 
d(p) = ~-~! tr(pH(1)) coincides with the yon Neumann dimension of )Cp as a left 
module. 

Bimodules can be tensored with each other by identifying the left action on the 
right factor with the right action on the left factor: ( k l  �9 m) | k2 ~ k l  | p2(rn) �9 kg.. 
We denote the bimodule tensor product by | and find that it can be written in 
the form 

kl | J~k2 = p2(kl)k2 (2.4) 
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where multiplication and application of p on elements of/Ca are inherited from the 
above mentioned identifications of/Ca with subspaces of .h~, where these operations 
do have a meaning. In particular, by tensoring Pl (re)k1 with k2 we find that 

]Cp~ |  ]Cp2 =/Cp~p, (2.5) 

where p2pl is the composition of endomorphisms. 
Let ~(p, ~r) be unitary operators which intertwine the product endomorphisms 

p~ and ap. These operators naturally also intertwine the corresponding tensor 
product bimodules ]Cr |  ]cp and ]cp |  ]Ca. (Note the different order of the 
factors!) Indeed, such intertwiners ("statistics operators") are provided by the the- 
ory of superselection sectors as the intrinsic characterization of generalized particle 
statistics [4], and are naturMly lifted to intertwine also the endomorphisms of .~4. 
Therefore, the tensor product of the bimodules under consideration is independent 
of the order of factors up to unitary equivalence. The (lifted) statistics operators 
replace the "universal R-matrix" of quasi-triangular Hopf algebras. 

Similarly, intertwiners in the theory of superselection sectors which single out 
irreducible subsectors from a product of superselection sectors, lift to intertwiners 
between endomorphisms PaP# and p~ of A4, and yield a decomposition of the 
corresponding bimodules 

]C# ]Ca O (2.8) 

with the same multiplicities N~# as the "fusion rules" of the superselection struc- 
ture. They play the role of Clebsch-Gordan decomposition of tensor products of 
matrix representations of Hopf algebras. 

So far for the abstract symmetry structure. The next issue in the construction 
below is an isometric and unital embedding k ~-* Ibk of ]Cv into the field algebra, 
i .e . ,  

r = (k, l) and E r162 = 1. (2.7) 
I 

The latter equation holds for any basis (2.2), with Ct ~ tbb,. Since (k, l) is in M,  
this means in particular that also Ad is contained in the field algebra (actually, 
M C ~ is the isometric image of ]Co). The bimodule symmetry is implemented in 
the field algebra by 

m .  Ck �9 n = r (2.8) 

and therefore, in terms of a basis Ct = Cbt 

m . r = Y ~  Cs " p j l ( m ) .  (2.9) 
J 

This formula naturally generalizes the transformation law (1.3). (Pat) can in gene- 
ral not be written in terms of a coproduct and a numerical matrix representation. 
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By working out the details of our construction, we find that by virtue of the iso- 
metric embeddings of bimodules ICp into the field algebra, the previously mentioned 
structures of exchange and reduction of bimodule tensor products turn into 

l ~ j  ~ = "R j ,  (+)  (2.10) 
J ~ l  t 

g e e  

e,K 

where both the "R-matrix and the Clebsch-Gordan coefficients C take values in .M, 
"R satisfies the appropriate braid group identity involving Pmat as shift operation, z 
and y refer to translation such that ~ ' (x )  and ~ ( / / )  become localized at space-like 
distance, the sign 4- depending on z being to the left or to the right of ~/. The sum 
over e in (2.11) extends over the multiplicity of/C, being contained in/C~ | K;~. 
T~ are gauge-invariant operators, i.e. local observables. 

We conclude that our scheme of quantum symmetry via bimodules is realized in 
terms of commutation relations (2.9) within the field algebra, and provides specific 
exchange and Clebsch-Gordan expansion formulae. There is finally a conjugation 
structure K;p ~ k ~ k + E/Cg (inherited from * in .&4) such that 

(p(m)kn) + = ~(n*)k+m * (2.12) 

which is implemented by the Hilbert space adjoint in the field algebra 

~2; = (gauge invariant) . ~b~+. (2.13) 

It plays the role of the conjugate representation of Hopf algebras induced by the 
antipode. Therefore, all of the structural ingredients of quasi-triangular Hopf alge- 
bras (quantum groups) have their counterpart in the bimodule approach, and have 
the correct physical meaning in the algebra of charged fields. 

3. Strategy  o f  the  cons t ruc t ion  

The construction of the triple (~', G, ~/) from the local quantum field theory ~4 [1, 
2] proceeds in four major steps, which we shall sketch only cursorily. The first step is 
the analysis of the superselection structure of.A. There exists a fully elaborated the- 
ory of superselection sectors [4]. Asymptotically vacuum-like positive energy repre- 
sentations of.A are described in terms of localized endomorphisms p of.A. The com- 
position of representations is established by the product of endomorphisms. This 
product is non-commutative, but p~ and ~p differ only up to some inner unitary 
similarity transformation given by the statistics operator ~(p, ~,). Endomorphisms 
which possess a conjugate have finite local index IndLo(A(O)) C A(O)] -- d(p) 2 [5], 
defining a dimension function d(p). They are the objects of a strict monoidal braid- 
ed C* category with direct sums, subobjects, and conjugates (for short: BC*C)  
[2]. The (monoidal) product of objects is the composition of endomorphisms, and 
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the C*, braided, and conjugation structures are provided by the theory of superse- 
lection sectors. In particular, every product of irreducible representations is finitely 
reducible and, with N ~  the fusion multiplicities of the theory, 

d(p~ = Na~d(p.y ). (3.1) 

In the second step, one constructs from this B C * C  a (model of the tmiversal) 
hyperfinite type 111 yon Neumann factor Tr denoted by f14 in the present context. 
At this point one needs for technical reasons the assumption that the number of 
sectors in the theory is finite ("rational theories"), but we expect that this condition 
may be relaxed..A4 is the "path model" [6, 7] of pairs of paths (strings) (~, 7/) with 
common initial and end points, equipped with the Witten "string product". The 
paths live in a graph with vertices a and N ~  edges of color a extending between 
the vertices fl and 7. The trace on M is provided by a conditional expectation 
associated with the conjugation of sectors. The essential point now is that the 
endomorphisms of .A induce endomorphisms of A4 (denoted by the same symbol) 
in terms of a parallel transport in the path model terminology. The corresponding 
cell matrices [7] are given by certain coupling constants of the superselection theory 
(fusion matrices) which play a similar role like Wigner-Racah 6j-symbols for the 
reduction of multiple tensor products of group representations. 

The third step consists in the observation that the bimodules/Cp of M induced 
by the endomorphisms p of M (see above) themselves are the objects of another 
BC*C.  The (monoidal) product of this category is the bimodule tensor product 
(2.5), while the C*, braided, and conjugation structures are again given by the local 
interwiners which are naturally lifted to intertwiners between bimodules. The fact 
remarked above that the bimodule tensor product inverts the order of the factors 
in the corresponding product of endomorphisms amounts to saying that the two 
BC*C' s  are pseudo-equivalent to each other [2]. 

The final step is the "bard part": the actual construction of the field algebra 
into which K~p are isometrically embedded, and of the Hilbert space on which the 
bimodule action is implemented by (2.9) singling out ,4 = 2 "G - .T O f14 ~, the com- 
mutant of.A4 in .T. For its detailed description we refer to [1]. It relies heavily on an 
intrinsic CPT symmetry of the coupling constants of the superselection structure, 
and involves a sort of "contraction" of the dynamical degrees of freedom given by 
the endomorphisms of.A with their CPT-reflected inner degrees of freedom given 
by the bimodules of .hi{. As a result, the field multiplets Ck, k 9/Ca, are charged 
fields in the sense that they create the charged sectors from the vacuum sector by 
virtue of the commutation relations with the observables 

Ck. A = p(A)-Ck. (3.2) 

Together with the embedding k ~-~ ~bk being isometric and unital (2.4), this is 
a precise generalization of the construction [3] in the case of permutation group 
statistics, where the symmetry is established as a compact group of automorphisms 
linearly transforming the finite multiplets r The latter are isometric and unital 
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embeddins o~ vector spaces of complex dimension d(p) E I~ (the Cuntz algebra) and 
extend the algebra of observables by the same relations (3.2). 

The Hilbert space obtains by the GNS construction from a ground state on the 
field algebra, which in turn is indaced from the vacuum state on the observables 
.4 and the trace state on .M. In restriction to .4 = .T ~, 7/ decomposes into the 
superselection sectors 7"/u with multiplicity spaces Vu (the completions of K:a) on 
which the symmetry acts: 

n = O n , , |  v,,. (3.3) 
Q 

4. Conc lus ions  

We have seen that alternative schemes than quantum groups are viable in or- 
der to describe quantum symmetries in quantum field theory and to explain the 
occurrence of superselection sectors. Our approach has the advantage of being 
readily implemented on a Hilbert space without any (intermediate) indefinite norm 
problems. 

Another issue is the following. The bimodule approach involves representation 
spaces of infinite complex dimension, but it identifies the yon Neumann dimensions 
of these spaces with the intrinsic "quantum" dimensions of the sectors. In contrast, 
to some given model such as (the chiral version of) the Ising model with its simple 
fusion rules one can associate several candidate deformations of classical Lie alge- 
bras which at the appropriate value of the deformation parameter are "truncated" 
to yield the same desired finite fusion rules. Which of these quantum groups should 
then be regarded as the "true" quantum symmetry, and can there be any intrinsic 
meaning of the naive dimensions of its representations? To some extent, the answer 
has been given in [8]: the truncated quantum group ceases to be a Hopf algebra, 
and in particular has few if any remembrance of the original classical Lie algebra 
or its deformation. In fact, as an algebra with only finitely many representations 
it rather seems to be a generalization of a finite group. 

One may feel uneasy with our construction, the coefficients of commutation rela- 
tions and Clebsch-Gordan expansions taking values in the symmetry algebra itself 
(and hence that the symmetry algebra is a subalgebra of the field algebra). But 1 ~ 
this is not in conflict with any physical principle, and 2 ~ we note that, e.g., sym- 
metry group valued Clebsch-Gordan coefficients are necessary to reconcile commu- 
tation relations of the form (1.4) with N replaced by 2N--encountered in models 
with simple conformal currents (N even)--with the ZN gauge principle suggest- 
ed by the fusion rules. Here, an obstruction (which occurs only with braid group 
statistics) intrinsic to the algebra of local observables prevents any construction 
of charged fields with numerical Glebsch-Gordan coefficients [2]. A similar formal 
structure was obtained by Mack and Schomerus [8] when passing to the quasi Hopf 
symmetry in order to accomodate the fusion rules of the minimal models., They 
traced back the non-numerical coefficients to the lack of co-commutativity of the 
coproduct. 
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