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M a r k o v  Traces  as C h a r a c t e r s  for Loca l  A l g e b r a s  

K . - H .  R e h r e n  

Instituut voor Theoretische Fysika, Rijksuniversiteit Utrecht, POB 80.006, NL-3508 TA UtrecM 

ABSTRACT: Statistics governs the superselection structure of local quantum field theory. The intrinsic 
information is encoded in Markov traces~ which characterize equivalence classes of irreducible represen- 
tations (sectors) as well as their composition rules. The Markov traces also provide a tool to classiC: 
(quantum) symmetries. 

1 .  I n t r o d u c t i o n  

The analysis of statistics is a powerful tool to explore the 

structure of the physically relevant representation theory 

of local algebras [1]. It  provides information about the 

superselectiou rules, which reflect the particle or charge 

content as well as interactions, in intimate relation to the 

concepts of internal symmetry [2] and covariance (spin). 

In four-dimensional massive quantum field theory, 

permutation group statistics yields very natural and fa- 

miliar results: the presence of a compact (global) gauge 

group governing the selection rules, and the usual spin- 

statistics theorem. In lower dimensions, the occurrence 

of braid group statistics reflects the possibility of frac- 

tional spin and a more general "quantum" notion of 

symmetry. We want to contribute to a structural under- 

standing ^t,L^.^ : . . . . . . .  ~.;~h . . . .  I. . . . . .  ,t tho ~,~n;,~c~l 

study in large classes of conformal models. Although we 

shall recover most of the structure familiar from these 

models, we shall never assume or exploit conformal co- 

variance throughout this article. 

The starting point is the observation [1], that pre- 

cisely those representations ~r of a local algebra ,4, which 

describe "particle-like ~ excitations (as compared to the 

vacuum representation 90; for the precise setting, we re- 

fer to the original literature [1,3]) can be alternatively 

described in terms of appropriate endoraorphisms p of 

,4, such that ~ is unitarily equivalent to 

7rp = ~r0 o p. (1.1) 

In particular, there is a natural compc~ition law for 

representations ~ri = ~ro o pi : 

7r~ X ~r2 = :¢o o p.. o / ~ ,  (1.2) 

which comprises the physical connotatiou of building 

multi-particle asymptotic states from one-particle states. 

The theory of superselection sectors describes the re- 

ducibility of product representations xl x ~r2, resp. cam- 

posite endomorphisms lhP2 ---- Pi o p~ (the s u C -  

tion rules). The theory of statistics describes the non- 

commutativity of the composition law. Both turn out to 

be closely related to each other, as well as to the notion 

of charge conjugation. 

Since the set of endomorphisms of an algebra is de- 

termined by the algebra itseff, the study of its compo- 

sition law is an intrinsic characterization of the algebra. 

In the quantum field theoretical case at hand, the data 

of this characterization can be given as trace states on 

the braid group (or some larger algebra) with special 

(Markov) properties, i.e. as a collection of class-invariant 

numbers. It does not referto non-local and unobservab|e 

fields creating the representations of interest fTom the 

vacuum (hence lying outside the algebra ,4), but deter- 

mines the algebraic properties (commutation relations) 

of would-be such fields, and in fact allows to construct 

them. 

The very restrictive properties of the field-theoretical 

Markov traces offer a handle to classify statistics and 

superselection structures, and thus gives a hint on the 
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laws governing fractional spins and on the nature of quan- 

tum symmetry. We shall point out an interpretation of 

particle-like representations with braid group statistics 

as soliton-like representations of some extended algebra. 

2. Stat is t ics  

Let us fix some terminology. 

The algebra .4 is generated by subalgebras .4((9) 

of operators localized in the simply connected bounded 

space-time regions O (which are intervals on the real 

axis, if "space-time" is the "chiral light-cone" of confor- 

real field theory)..4(O1) and .4(02) commute if the two 

regions have space-like separation: O1 X 02. We call {9 ~ 

the causal complement of O, which is simply connected 

if D > 2, and which consists of the right causal comple- 

ment 19 + and the left causal complement O-  if D < 2. 

In the latter case we write O1 < (92 if O1 C (02)- .  

The relevant endomorphisms of .4 corresponding to 

translationally covariant representations are localized and 

transportable: p is localized in (9, iff it acts trivially on 

the subalgebra .4(O'). p is transportable, iff for every 

translate region (~ of O there is an equivalent endomor- 

phism/~ localized in C). The set of localized and trans- 

portable endomorphisms of .4 is called A t. (While these 

properties are physically characteristic of particle-like ex- 

citations, mathematically they are necessary conditions 

for the representation lrp = 7r0 o p to be created by local- 

ized fie!d~ ¢,  i.e. 7r(A)¢ = Cr0(A), see sect.5. There we 

shall also consider solitonic endomorphisms, for which ~r, 

in restriction to the left and right causal complements co- 

incide with the same vacuum representation r0 only upto 

unitary equivalence.) 

Two localized endomorphisms p,/~ are equivalent, i.e. 

7r~ ~_ ~r~, iff there is a unitary U q .4 such that 

h(A) = Up(A)U' ,  i.e. ~ = av o p. 

Here av ~ At is the inner automorphism 

av(A)  = UAU" 

localized in O iff U ~ .4(0).  Inner automorphisms 

do not lead to new superselection sectors (equivalence 

classes of representations). 

Whenever Irl = 7r0 o pl and ~r2 = 7to o p2 possess com- 

mon subrepresentations, then there are operators inter- 

twining from p2 to pl, i.e. operators T E .4 satisfying 

Tp2(A) = pl(A)T.  

The linear space of intertwiners from P2 to Pl is denoted 

by (PIIP2)- In particular, U ~ (~ulid). 

The composition (1.2) of irreducible representations 

will in general be reducible. Then there are projections E 

in the commutant PIP2(.4)' corresponding to irreducible 

components p3 E At of PiP2 E At, and intertwiners 

T E (PlP2[p3), TT"  = E. 

The dimension of the space of intertwiners (PlP2[P3), 

pi E At  irreducible, is the multiplicity of ~r3 = 7ro o p3 in 

lrl x 7r2, and will be seen to be a class-invariant, i.e. in- 

dependent of the representatives p/from the equivalence 

classes (superselection sectors) [P/l- 

The composition law (1.2) is in general non-commut- 

ative. But if Pl, P2 E At are localized in O1X 02, then 

PiP2 = P2pl, ~=~ r:l x z" 2 = rr 2 x ~'1. (2.1) 

Let us state the main results [1,3] defining statistics. 

2.1. T h e o r e m :  There is a collection of unitary stat- 

istics operators for every pair pl, p2 E At, implementing 

the unitary equivalence between 7rl x rr2 and 7r2 x r,l: 

7r2 x 7rl(A)= ~r0(c(pl,p2)) • 7q x lr2(A)- 7r0(c(pl,p2))', 

6(Pl,p2) E (P2PlIP, P2), (2.2) 

which is uniquely determined by the properties 

p3(T) (pl, p3) = s(p2,p3)T } 
=C(pz, p2)'T for T (P21Pl), (2.3) 

= 1 ,  if [ O1XO2 f o r D > 2  . (Pl,P2) (2.4) 
t O 2 < O 1  fo rD_<2  

(pi localized in Oi). These properties imply 

c(P3, plP2) = PI(c(P3, P2))~(P3, Pl), (2.5) 

6(p, ,  p2 ) p )p, ( ) = 
= e(p2,Pa)P2(e(p,,p3))c(p,,p2), (2.6) 



K.-H. Rehren / Markov traces as characters for local algebras 261 

and 

e(p,, p2)e(p2,p~) = 1, if D > 2. (2.7) 

(By virtue of the transportability, pi can be written as 

or-  o~,  where/~i are localized as in (2.4), thus e (~ ,  ~2) = 

1. Then using (2.3), e(pt,p~) can be computed in terms 

of the charge transporting operators U~. The result is 

independent of the auxiliaries U~ and ~i.) 

For D < 2, in general e(p~, p2) # 1 for O~ < 02. 

The rules (2.3), (2.5), (2.6) express the commutativ- 

ity of the following diagrams (with the arrows imple- 

mented by the respective intertwiners): 

~' l  X ~ "  3 ---~ ~'~ X ~- 3 

~r 3 X71"] --+ ~r 3 X ~ r 2 ~  

( ~ x ~ 2 )  x~3 -- ~ x ~ x ~  

~ x ( ~ i x ~ )  +-- ~ q x ~ x ~ ,  

~rl X ~r 2 x ~ r  3 --~ ~r 2 X 11"1X ~r s --~ 

~r I X ~r s X ~ r  2 --~ ~r s X ~ r  I X ~ r  2 ---~ 

2.2. Corol lary:  

7r2 x 7r3 × 7r 1 

7~ s x ~r2 x ~rl.  

~, := ~(p,p) ~ (p=lp =) - p~(~t)'. (2.8) 

p(~,)~,p(~,) = ~,p(~,)~.  (2.9) 

e ~ = l ,  if D > 2 .  (2.10) 

(Observe that every spectra] projection of the statis- 

tics operator e 0 is a projection in the commutant p2(.4)' 

of p2, hence defines a subrepresentation of Irp x lrp. This 

bearing of the statistics on the reducibility of composite 

representations will be worked out in detail in sect.3.) 

2.3. Corol lary:  Let Bn denote the braid group gen- 

erated by the symbols ol ,  i = 1 , . . . ,  n - 1, with the rela- 

tions 
cqtrj = trity ~ if [i - j [  >_ 2, 

oi~i+ltTi = tri+loityi+ 1. 

Let p E A:. Then the mapping 

e(p") : oi ~ pi-l(ep) (2.11) 

defines a hornomorphism of the braid group B,  into the 

unitary operators in the commutant ( f l f )  = f ( .A) '  C 

.4. The family {e~")l n E/V} is compatible with the in- 

clusions B,-1 C B ,  and ( f - i l l - 1 )  C ( f [ f ) ,  and thus 

extends to a homomorphism e(p 00) of the infinite brakl 

group Boo into L ~ ( f l f )  c .4. 

If D > 2, then e(p ~) respect also the additional relation 

= 1, hence define homomorphisms of the pe rmuta tm 

groups S,  into the unitaries in ( f [ f ) .  

(The above statements naturally genora/~  to the 

groupoid of "colored braids', involving the stat~tics op- 

erators 6(pj, Pk) instead of ep = ~(p,p). We s ~  turn to 

this extension in the discussion of the identities among 

field theoretical Markov traces, sect.4.) 

3. S u p e r s e l e c t i o n  S t r u c t u r e  

We shall now sketch the releraace af the statistics for the 

superselection structure, i.e. the reducibility of comtms- 

ite endomorphisms. The results are by now sta~r2ard, see 

e.g. the recent reviews [4], and perfectly match with the 

experience from conforms] models. To obtain the results 

below in the general theory of superselection sectors: it 

is, however, necessary to exclude sectors the square of 

which could he infinitely reducible (such sectors c~nr~ot 

occur in massive theories, but might be relevant in "non- 

rational" conformally covariant theories) and keep o~v  

the proper ones. These are sectors for which there is a 

charge conjugation: 

Let p E At be irreducible, p E At irreducible is 

a conjugate of p if ~r~ x ~rp contains the vacuum as an 

irreducible subrepresentation, i.e. there is an isometry 

R e (pplid), R*R = I, (3.1) 

and if 
A(p) := R*~(ep)g ~ 0. (3.2) 

The latter quantity is a scalar, called the statistics pa- 

rameter, its phase ~: the statistics phase, and its inverse 

modulus d _> 1 the statistical dimension: 

~(P)  (3.3) 
~ ( P ) -  d(~)" 

(The non-vanishing of the statistics parameter is crucial 

as a part of the definition of the conjugate, since most of 

the following properties of conjugates would not hold for 
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A = 0. In fact, A = 0 can be excluded for massive covari- 

ant representations. Recall that the statistics operator 

can be computed in terms of translation operators. This 

also lies at the origin of the relation between spin and 

statistics: 

w(p) = exp2ri  s, (3.4) 

where s is a spin occurring in the representation ~r0 o p.) 

If A # 0, then p and rp are called proper. 

3.1. P ropos i t ion :  If p is proper, then its conjugate 

is unique up to equivalence. The multiplicity of the 

vacuum in ~r~ x rp is one, i.e. dim(fip]id) = 1. A(p) is 

independent of R, and is in fact a class-invariant of the 

sector [p]. p is a conjugate of ~, ~ is proper, and 

A(/3) = A(p). (3.5) 

Let us now introduce the left-inverse ¢ of p as the 

mapping of ,4 into A 

¢(A) := R*~(A)R. (3.6) 

While in general, ~b is no endomorphism of A, it satisfies 

¢(1)= 1, 
¢(p(A)Hp(C)) = A4(B)C. (3.7) 

In particular, 4op = id (whence its name). If p is proper, 

then ~b is the unique positive mapping satisfying (3.7). 

The left-inverse is very useful to study the super- 

selection structure. Namely, every subrepresentation of 

~rl x ~r2 corresponds to a projection E in the commu- 

tant p, p2(,A)' = (p, p2lplp2). Exploiting the property of 
left-inverses: 

T 6 (pp.lpp,~) ~ ¢(T) 6 (P,,,IP~), 

one finds e l (E)  E p2(.A)'. If P2 is irreducible, this can 

only be a scalar by Schur's Lemma. These numbers con- 

trolling the reducibility of composite endomorphisms can 

actually be computed: 

3.2. Theo rem:  Let ~rl, ~r2 be proper. Then 7rl x 7r2 

is equivalent to a finite sum of proper subrepresentations 

7r (j} - -  7C 0 o p(J). The corresponding minimal orthogonal 

projections E(J) 6 p, p2(.A)' have "relative dimensions" 

¢,(E(j) ) = d(p(J)) 
d, d2 (3.8) 

To every component p0) corresponds an eigenvalue of the 

monodromy operator: 

e(p2,pl)e(pl, p2)E(J) = w(p0))E(j)" (3.9) 
V310./2 

The sum rule for statistical dimension 

d(p (j)) = did2 (3.10) 
J 

holds, and every d(p 0)) lies in the interval 

'dl <- d < did2. (3.11) 

Endomorphisms need not to be invertible, i.e. auto- 

morphisms. If p 6 At is invertible, then its class [p] is 

called a simple sector. We give criteria for this situation. 

3.3. P ropos i t ion :  Let p 6 At be proper. The fol- 

lowing statements are equivalent. 

(i) p is an automorphism, i.e. p is invertible. 

(ii) p2 is irreducible. 

(iii) ep is a scalar. 

(iv) d(p) = 1. 

Let V denote the set of equivalence classes [p] of 

proper endomorphisms. The equivalence classes of the 

proper components of PaPZ are independent of the repre- 

sentatives p~ 6 [pc,], pa 6 [p~], and coincide with those of 

p~p~. Thus it is justified to introduce the class-invariant 
multiplicities 

N2, ~ -- dim(p~p~[p,) (3.12) 

of [p~] in [P°I[P,], which may be organized into "fusion 
matrices" (N~)~ = N ~ aB"  

3.4. P ropos i t ion :  For a 6 V denote by ~ the 

conjugate class [Pa] = [#4], and by [0] the class of the 

identity. Then 

N ~  = N ~  = N~,-= N ~- (3.13) 
5B" 

No = 11, g~ = g T. (3.14) 

N,  Nz = NzN~ = ~ N2~N.~. (3.15) 

N , . d _ = d , d ,  (3.16) 

where _d is the vector with components da = d(pa). 
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4 .  M a r k o v  T r a c e s  a n d  C l a s s i f i c a t i o n  

We have in the preceeding section introduced the statis- 

tics parameters A = oJ/d as dass-invariants of proper rep- 

resentations ~rp, and class-invariant fusion matrices N ~  

describing the superselection structure. In general these 

numbers will not be sufficient as complete characteriza- 

tions of equivalence classes. But there are huge class- 

invariant trace states on the commutants p t - - .  p~(-zl) ~, 

which generically encode much more information, and 

are subject to various functional identities. The latter 

are very restrictive and (at least in various important 

cases) can be exploited to obtain a quantization of the 

admissible values of the parameters. We shall introduce 

here only the restrictions of these trace states to the im- 

ages of the braid groups provided by the statistics opera- 

tors, considered as functionals ("field-theoretical Markov 

traces") on the braid groups. Under favorite circum- 

stances, these restrictions already uniquely characterize 

the statistics and the superselection structure. 

4.1. P r o p o s i t i o n  [3,4]: Let p be proper, ff its left- 

inverse. The mapping 

tr(") := 6" o ~") :  B,~ ~ ~ (4.1) 

extends to a normalized positive strong Markov trace tro 

on the group algebra of Boo; i.e., for b E B,~ C B,~+I one 

has 

tr~"+')(b) = td'O(b), (4.2) 

and the following functional identities hold. 

trp(e) = 1, trp(b - t )  = trp(b)*, (4.3) 

trp(btb2) -- tro(b2b, ). (4.4) 

If bt is a word in the generators o ] , . . .  ,o~-1 and b2 

is a word in the generators ok , . . .  ,o~_l ,k  < n, then 

trp(b~b2) = trp(bt) trp(b2). (4.5) 

trp(xx')  >_ O, (4.6) 

where * is the anti-linear extension of the inverse on Boo 

to the group algebra. 

The trace trp depends only on the equivalence class 

of p, and 

t ~ ( ~ )  = try(b), (4.7) 

where if b = s t . . .  s,  is a word in the symbols ~ i  I then 

= s , . . .  sl is the "reversed" word. 

The value of tro on a generator ol is the statistics 

parameter A(p). 

To give an idea how to exploit this proposition, we 

shall sketch the quantization of statistics parameters in 

the "Hecke case" [1,3,5]. The Hecke case is characterized 

by the validity of a quadratic equation for the statistics 

operator ep implying that e o has at most two different 

eigenvalues: 

(ep - m)(~p  - ~2) = 0. 

This is guaranteed, e.g., in the case of permut~ion group 

2 1, or if pZ has at most two irreducible statistics: % = 

components: then p2(.A)' contains at most two spectral 

projections of ¢ r  

Using the quadratic equation in addition ~o 4.1., one 

can compute tro(b ) recursively for every b_~d b, as a 

function of the parameters pt,p2,)t  = trp(cr~). On the 

other hand, one can find projectors ear = e~ = e~ (gen- 

eralizing Young tableaux of S~) in the Hecke algebra, 

which is the group algebra of B~ divided by the ideal 

generated by ( o / -  pl)(oi - P2) = 0. Hence one obtains 

infinitely many inequalities tro(eT ) >_ 0 from the positiv- 

ity of the trace. Solving these inequalities for pl,p2, A 

one finds only a discrete series of admissible values for 

the statistical dimension: 

sin ~-£+~ 
d = l ~ l  - ~ =  . , , 

where N , L  = 1 ,2 ,3 , . . . , oo  are integers, and relations 

among the phases. The special case of permutation group 

statistics, i.e. pl,P2 = 4-1 reduces to L = ov and 

d -  N = 1 ,2 ,3 , . . . ,  w = + l ,  

where by a strong theorem ([2], see 5.1.), N acquires the 

interpretation of the dimension of a representation (as- 

sociated with the sector) of some compact gauge group, 

and ~0 = 4-1 distinguishes bosons from fermions. 

A similar analysis has been performed [6] for the case 

that p2 has three irreducible components one of which is 

simple. This case reduces to the analysis of traces ca 

Birman-Wenzl algebras. 
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While 4.1. refers to every sector separately, we want 

now to turn to a generalization providing more class- 

invariants (beyond N~O) related to the superselection 

structure. 

Let b E Bn, and let A : {1 , . . . , n}  ~ At be a la- 

belling of the symbols 1 , . . . ,  n by transportable endo- 

morphisms. Let 7r denote the canonical projection of B,, 

onto S~, z(ai) = ri  = ( i ,  i + 1 ) .  Putting 

e(A,al) := Pl ...Pi-l(e(Pi,Pi+l)), (4.8) 
e(A,  71) := 

where pj = A(j), the recursive definition of the homo- 

morphism of the groupoid of "colored braids" into the 

local unitary operators defined by 

e(A, b2bl) = e(A o ~r(bl)-l,b~)e(A,b~) (4.9) 

is unambiguous by virtue of 2.1, and with pj = A(j) and 

~" = ~r(b),  

e(A,b) e ( P r q l ) . . . P ~ - q n ) l P ~ . . . P , ) .  (4.10) 

Considering braids as topological objects, this defini- 

tion amounts to the choice of a two-dimensional projec- 

tion of the braid, assigning "colors" pl to its lines, and 

representing every vertex by the appropriate statistics 

operator of the two colors involved. 

In this picture, applying left-inverses can be inter- 

preted as "closing" the braid into a link by identifying 

its in- and out-going lines. Hence one is led to con- 

sider pairs (A, b) such that A o ~r(b) = A. These are 

precisely those pairs, for which e(A, b) lie in the corn- 

mutant p l . . .  p,(A)' ,  i.e., those relevant for the study 

of the reducibility of composite representations. Equi- 

valently one can say that A is constant on the cycles 

( i , r ( i ) , . . . ,~ r t - l ( i ) )  of ~r = 7r(b), which in turn corre- 

spond to the components of the link obtained by closing 

the braid. We shall refer to the cycles of ~r(b) as the com- 

ponents of b, and call (A, b) a labelling of the components 

of b if A o ~r(b) = A. 

In order to be able to apply left-inverses, we have to 

restrict A to take values which are products of proper 

endomorphisms p~. . .p~ ~ At. Denote by L~ the set 

of all labellings of the components of braids in B,  by 

products of proper endomorphisms. 

4.2. P ropos i t ion :  Define the functional tr on L~ 

by 

t r (h ,b )  := ¢~. . .¢ l (e(A,b))  e (/', (4.11) 

where if pi = A(i) = p~. . .p~ then ¢i = ~b~...~b~ is 

the "standard left-inverse" of pi, which is the product 

of the unique left-inverses of the factors. Then tr  is a 

class-invariant functional, i.e. its values are independent 

of the choice of representatives p,, E [p~,] of the proper 

endomorphisms involved. It satisfies the following func- 

tional equations. 

If b E B~ is identified with b' -- b E B,,+1, and if 

h'(i) -- h(i) for i < n, then, independently of the label 

h'(n + 1), 
tr( h' ,  b') = tr( A, b). (4.12) 

trCA, e) = 1, tr(~t,b -1) = trCA, b)*. (4.13) 

t r (h ,  blb2) = tr(A o ~r~l,b2b,) (4.14) 
-- t r (A o ~rl, bubl), 

where ~ri-- 7r(bi). 

If bl is a word in the generators a l , . . . , a k _ l  and bu 

is a word in the generators a k , . . . , a , - 1 ,  k < n, and if 

pk = h(k) is irreducible, then 

tr(A,  blb2) = tr(A,  bl) . tr(A,  b2). (4.15) 

If A. is the constant labelling A(i) = p, p proper, then 

tr(A,b)  = trp(b). (4.16) 

Putting b as in 4.1., and ~,(i) = p~ . . .#~ if h(i ) -- 

p~. . .  pz, then 

tr(A, b) = tr(A, b). (4.17) 

If some cycle (i, ~r(i),...) of length l is labelled by 

h(i) = A(~r(i)) = . . .  = p ,  pa, then 

[ 
]' t r (A . ,b ) ,  (4.18) 

dr 
t (A, b)= td-- J ~¢EV 

where h.~(i) = h~(Tr(i)) = . . .  = p.~ e [p~], and A~(j) = 

A (j) else. 

For A(1) = p~, A(2) = p~, and A'(1) = p~, A'(2) -- ~ 

one has 

tr(A,a~ "2) - tr(A',a+2). (4.19) 
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(Except for the last two statements, this is a rather 

straightforward generalization of the previous proposi- 

tion. (4.18) and (4.19) are proven by repeated use of 

(2.3) and Theorem 3.2.) 

Observe that if one expands e(A,ai) = e(Pa...P~, 

P~...Ps) by virtue of (2.5) into products of statistics 

operators of the involved proper factors, and similarly 

~(A, a~-X), one finds that every 6(A, b) is rewritten in the 

form e(/~, b), where b E BN is an "amplified ~ braid for 

some N ~_ n and 1~, is a labelling of the components of 

by proper endomorphisms ((/k, b) is obtained from (A, b) 

by replacing every line (i) of the braid by several lines 

labelled with the proper factors of A(i)), and re(A, b) = 

tr(A, b). In fact, the above functional identities follow 

from the same identities among tr(A, b) such that A(i) 

are all proper, if the left-hand-side of (4.18) is understood 

in the described identification.* 

Let us now evaluate some of the restrictions expressed 

in 4.2. [7]. Define the matrix Ya~, o,/5 E V: 

Y~ := d~do tr(A, ai-2), (4.20) 

where A(1) e [p~], A(2) • [p~]. The trace and conjuga- 

tion properties (4.14), (4.17) and (4.19) imply 

Y,~a = Ya= = Y~O = Y:~, (4.21) 

The fusion property (4.18) with b = ai -~, A(1) = A(2) = 

PoP~, and the factorization property (4.15) yield 

y ~  ~ ~m waw0,1 (4.22) 
~ -  ~' z • ot/3 ('D7 ~'3'" 

Again (4.15) with b = ai -2, A(I) = PaP~, A(2) = Ps 

yields 

d[ 1 Y~Y~s = ~ N~a~ Y~s. (4.23) 
-y 

These equations imply the following [7, Sect.5]. 

4.3. Proposi t ion:  Assume that V (or some subset 

of proper sectors closed under composition with subse- 

quent reduction, and conjugation) is finite, hence Y a 

finite matrix. Then: 

Either Y is invertible. Putting a := E~ ~ ,  and 

s : =  I~1-' Y, (4.2,~) 
T := (a/I,rl)'/3Oiag@,,), 

one has I~1 ~ = E a ~ ,  and 

S S  t = T T  t = l ,  
T S T S T  = S, (4.25) 

$ 2 = C ,  T C  = C T  = T, 

where Ca~ = 6~a is the conjugation matrix, and 

soss~ss~s (4.:m) 
so, 6 

(This algebra is famous from :rational" confeemal field 

theories [8], but is seen here not to depend on any co- 

variance or modular properties.) 

Or Y is degenerate. Then there is a n o n - t r i ~  subset 

Vales of ~degenerate" sectors [7] such that Y~s = g, d6 

for all 6 E V, and all other sectors may be grouped into 

"families", such that for [pa], [p~] in the same family the 

corresponding co]nmn vectors of the matrix Y are par- 

allel, and Wa -= 4-Wa. For [Pal, [PB] in differe~ families, 

the corresponding column vectors of the matrix Y are 

orthogonal. The degenerate sectors have permutation 

group statistics, are closed under composition with sub- 

sequent reduction and conjugation, and act irreduc~Iy 

within every family (i.e. P~,Pa belong to the same fasmqy 

if and only if there is "t belonging to a degenerate sector 

[7] such that N~a # 0. 7 is bosonic if w~ = wa, and 

fermionic otherwise.) 

A proper endomorphism 3' belongs to a degenerate 

sector, if and only if its monodromy with ev~'y proper p 

is trivial: 

e(3 ' ,  p)e(p, 7) = 1. (4.27) 

The two alternatives of 4.3. give some insight into the 

general superselection structure of theories with braid 

group statistics. The first one raises the challenging ques- 

tion to classify the solutions to the "self-dual" structure 

(4.25), (4.26) and the related "hypergroup" of matrices 

(3.13-16), and possibly to understand it in terms of some 

"quantum" symmetry. Many examples are known, e.g., 

in connection with conformal [8] and lattice integrable 

[9] models. The second one suggests [7] that there is 

a maximal extension of the local algebra by fields car- 

rying the degenerate charges, such that the superselec- 

tion structure of the extended algebra is given by the 
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first alternative. We shall elaborate more on this di- 

chotomy of general braid group statistics into a permu- 

tation group statistics part associated with an ordinary 

symmetry group, and a self-dual part, in the following 

section. 

Up to a phase, one has 

(5.6) 

The vacuum representation ~r0 of .T', defined as the GNS- 

construction from the state functional 

5 .  A l g e b r a  E x t e n s i o n s  a0(A¢~ ")) := 8bl[idl (fl, ~r0(A¢~))a), (5.7) 

Let us first discuss the case of pure permutation group 

statistics, which is equivalent to all sectors being de- 

generate. This case is in particular relevant for four- 

dimensional theories, and establishes that the superselec- 

tion structure can be deduced from the action of a global 

gauge group. 

5.1. T h e o r e m  [2]: Assume that V has pure per- 

mutation group statistics, i.e. 

= 1 V e [7i] e v .  

Then there is a 2g2-graded local algebra ~" D ,4 with 

trivial center, generated by ,4 and a collection of iso- 

metric operator multiplets (the charged fields) ¢I "y), 7 E 

[71 e V, i -  1 , . . . ,d (7) :  

¢(-~)-~/,(-y) 
i - r j  --" ~ i j .  (5.1) 

The latter create the superselection charges of ,4: 

¢I ~) A = -y(A)¢}'). (5.2) 

There is a compact global gauge group G of automor- 

phisms of ~', unitarily and irreducibly acting on the in- 

ternal degrees of freedom i, such that the equivalence 

classes of irreducible representations of G are in 1:1 corre- 

spondence with V and have the same composition rules. 

`4 is the fixpoint subalgebra of ,T'. In particular, 

= l, (5.3) 
i 

¢(72),b(zl)~/,(7~)*~h('Yl)* ± L_. i ~j ~i ~j = e(~/,,~/2), (5.4) 
. .  

z3 

with the - sign if both "h, 72 are fermionic. The subalge- 

bras .T'(O) are generated by A(O) and !b} ~), "i' localized 

in O. Then, if ~/l,'Y2 are localized in O1X O2, the normal 

commutation relations hold: 

¢(~1) -(~) .~.(~.~).,.(~1} (5.5) 

where 12 is the vacuum state vector of `4, contains all 

sectors [7] of A with multiplicity d(7). 

Now consider the general situation with braid group 

statistics occurring. Let Vpgs C V be a closed sub- 

set of bosonic sectors with permutation group statistics 

(the corresponding proper endomorphisms are generi- 

cally denoted 30, e.g., the subset Vdeg+ of bosonic de- 

generate sectors in the second alternative of 4.3. The 

DR-construction 5.1. applies to Vp~. Let .T" be the cor- 

responding field algebra. (The restriction to the bosonic 

case is for the sake of simplicity.) 

5.2. P ropos i t ion :  If and only if a proper endomor- 

phism p of `4 satisfies (4.27) for all 7 E [7] E Vpss, it 

extends uniquely to a localized and transportable endo- 

morphism (also called p) of ~" by 

= 7) '¢ !  "). (5.s) 

The extension is in general reducible. Its irreducible 

components p(J) are proper endomorphisms of .T', such 

that their statistical dimensions satisfy the sum rule 

~_,d(p(J))=d(p), (5.9) 
J 

and their statistics phases coincide: 

w(p (/)) = w(p). (5.10) 

Ill the case Vp~ = ~Tdeg+: if and only if p~, pz belong to 

the same family (in the sense of 4.3.) and w~ = w~, their 

extensions possess common subrepresentations. 

Sketch of a proof: Requiring triviality of p (localized 

in O) on .T'(O-) determines (5.8) (using (5.6) and (2.3- 

4)), while triviality on .T'(O +) determines 

p(¢!, , I )  = 



K.-H. Rehren / Markov traces as characters for local algebras 267 

The compatibility is precisely (4.27). Next, the commu- 

tant p(~')' is the finite-dimensional vonNeumann algebra 

spanned by the intertwiners 

¢}') 'T, { T E (TPIP) C A, 
7 bosonic degenerate. 

Its decomposition into matrix rings, and hence the re- 

ducibility of the extension of p, is governed by the mul- 

tiplication law 

~,('n)* T .,.(~2)* T 
i l  1 " tk'i 2 2 = 

X" ¢°/'('~')%/'(~2)*T "'(~)~ ,b(~)*T T 'T*  ~ , j , v i ,  vi2 -swj , wj - ( ,72(T1)T2), 

where T~ E (7~71 ]7), T E (TP[P) are orthonormal bases 

of isometries, and the operators in brackets are actually 

scalars: the first ones lie in the center of ~" and coincide 

with the Clebsch-Gordan coefficients of the group G; the 

second ones lie in the center of .4 and coincide with the 

operator product structure constants D of the "reduced 

field bundle" [7]. Similarly, in the case Vpm = VdCg+, the 

space of intertwiners in ~" from p~ to Pa is spanned by 

¢I'~)*T with T E (TP,,IP~), 7 bosonic degenerate, which 

by 4.3. implies the last statement. The remaining formu- 

lae are derived by standard techniques [1,3,4] from the 

observation, that left-inverses of proper endomorphisms 

of .4 extend to standard left-inverses of their extensions 

to ~'. 

It is instructive to consider an example. (The reader 

familiar with conformal models will recognize the exten- 

sion of the level-4 SU(2) current algebra .4 to the level-1 

SU(3) current algebra .T" [10]). Let V consist of three 

self-conjugate sectors [0], [1], [2] with fusion rules 

g ~  = ~ j ,  N~2 = ~j0, g i ~  = 6j, ,  N h  = L 

These determine the statistical dimensions to be d(0) = 

d(2) = 1, d(1) = 2. Assuming the sector [2] to be bosonic 

degenerate, and [1] non-degenerate, (4.21-23) determine 

the matrix Y 

~)= 2 - 2  2 , 
1 2 1 

and w = w(1) to be a non-trivial third root of unity. By 

the DR-construction 5.1., .F is generated by .,4 and one 

unitary charged operator ~b, such that 

7(F) = ¢F¢* 

restricts to an automorphism 7 E [2] of `4. The group 

G = ~ 2  acts on .~ by g ( ¢ )  = -!b, g(A)  = A. 

Let p E [1], T E (TP]P) C `4. Then p(.F)' is spanned 

by ! and ¢*T, and the latter may be normalized such 

that (¢*T) z = 1. Hence there are precisely two projec- 

tions 

E • = 2(1 4- ~b'T), 

hence two proper components p+ of the extensi(m of p, 

which have both d(p ±) = 1, hence axe automorphisms 

of Y" by 3.3. Since p was self-conjugate, either p:l: are 

self-conjugate or conjugate to each other. The first pos- 

sibility is ruled out, since self-conjugate antomorphisms 

have w 4 = 1 [7, Sect.3]. Hence the superselection struc- 

ture of ~ is given by the matrix 

( 1 1 1 )  
Y~-= 1 w w 2 , 

1 w2 w 

the character table of ~a  satisfying the first alternative 

of 4.3. This and other examples give further evidence to 

the conjecture [7] that for Vp~ = Vdcg, Y7 is always non- 

degenerate. We hope to return to this issue elsewhere. 

If in 5.2., Vps~ is larger than Vdeg+, then there are 

endomorphisms p of ,4 not satisfying (4.27) for all ~ E 

[~,] E Vps~. These can still be extended to endomor- 

phisms of ~', but the extensions will no longer be trivial 

on both ~'(O-)  and ~'(O+). However, ~oop and flo still 

coincide on both causal complements, showing that roop 

is still equivalent to - but c~nnot be simultaneously put 

equal to % in restriction to both causal complements. 

These are special cases of soliton representations [11] of 

~'. Soliton representations may by definition even ap- 

proach inequivalent vacua on both sides, and should not 

be excluded a priori in low dimensions. In fact, although 

we have restricted ourselves to localized endomorphisms, 

we see the solitonic ones naturally re-emerge. 

If either ~pgs consists of simple sectors only (hence 

the gauge group G is abelian), or if the endomorphism 

p to be extended is simple, then the monodromy factors 

are scalars, and p, chosen to be trivial on .~'(O-), acts 

on ~'(O+) as an abelian group of automorphisms. (The 
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selection rules for statistics phases [7] 

f~,(Pl)f~,.(P2) = ~r(P3) if (plp21P3) :/: {0}, 

where r are automorphisms, p are proper, and mr(p) := 

e(p,r)~(r,p) = w(rp)/w(r)w(p)  are scalar phases, turn 

out to be the product and the coproduct structures of 

this group.) The reader familiar with orbifold models 

of conformal field theory [!2] will recognize the "twisted 

sectors" here. In fact, if we return to our example above 

and restrict the algebra ~" to its subalgebra A, we find 

that .A possesses two more sectors i 3 [~], [~] of localized rep- 
resentations, with respect to which 7 is non-degenerate: 

= - 1 ,  p, e 

and which consequently come only from (or: can only be 

extended to) a solitonic representation of ~'. 

In general, however, if neither p nor 7 is simple, then 
,/,(~) the action of p on r i  E ~'(O +) (the "twist") cannot 

be considered as a group action and does not even leave 

.T'(O +) invariant. Many results of the previous sections, 

starting with (2.1), will fail as they stand, for general 
solitonic endomorphisms of .T'. 
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