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Abstract: We present recent results on the statistics in low-dimensional
quantum field theory. They are described by unitary representations of
the braid group. We discuss the structure of the “reduced field bundle”
which is a charged field algebra exhibiting the braid group in its commu-
tation relations (“exchange algebra”). We systematize results about the
superselection rules for sectors with braid group statistics.

1 Introduction

To classify quantum field theories is a very elusory task. The choice of a framework
(Lagrangean, Wightman, . . . ) may already, and in a most uncontrolled manner,
restrict the class of theories in the competition. Famous “no go” theorems may fail if
one changes the framework; just think of the new prospects hopefully expected from
string theories.

In particular, the description of a physical system in terms of unobservable fields
carrying superselection charge is highly ambiguous (bosonization, Klein transforma-
tions, Bogoliubov transformations, . . . ). An unbiased approach to quantum field
theory should be based on “first principles” to the largest possible extent, and should
attempt to avoid the ad hoc introduction of charged fields, (but certainly be capable
to describe charged states!). One such approach is the framework of algebraic quan-
tum field theory [1], developped to great perfection [2, 3, 4] but unfortunately widely
ignored. This is partially due to the criticism that it does not make specific dynamical
predictions; but on the contrary, it owes to its independence of model assumptions
a great conceptual clearness, separating the peculiarities of a model from the char-
acteristics of quantum field theory. Moreover, its affirmative value of justifying and
refining our understanding of the structure of particles (localizability [5], existence of
anti-particles [6]) and symmetry [7] can hardly be over-estimated.
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The analysis of superselection sectors and statistics as an intrinsic characterization
of C∗ algebras (local nets) of observables [3, 4, 8, 9] is another example for the power
of the algebraic approach. The prominent result is that in sufficiently high (≥ 2+1 or
≥ 3 + 1 depending on the localizability of charges) space-time dimensions, statistics
are permutation group statistics, while below they are braid group statistics. While
the former have been completely classified (Fermi or Bose para-statistics), the latter
are only partially classified; but the invariant (description independent) information
about braid group statistics is encoded in positive Markov traces associated with
superselection charges, which are accessible to classification by powerful mathematical
tools [10].

The detailed study of braid group statistics leads to a natural (though not canon-
ical) construction of a charged field algebra, the “reduced field bundle” F [8, 9],
from the observable content, i.e. the algebra of observables A, of the theory. This
structure precisely predicts all the remarkable structural observations, made in large
classes of two-dimensional models of conformal field theory and commonly ascribed to
the peculiarities of conformal invariance; but in fact, the abstract derivation is com-
pletely model independent and in particular has never to assume conformal invariance.
These issues, which have been worked out in collaboration with K.Fredenhagen and
B.Schroer, are covered in Sect.2 of this contribution.

As a matter of fact, the conformal models appear quite exhaustive for the admissi-
ble braid group statistics, as far as the latter are pinned down, in the crude sense that
every complication that cannot be ruled out by general arguments is indeed realized
in some of these models. One might speculate whether the conformal models provide
some “complete sample collection of prototypes” of braid group statistics, in this
respect comparable to the free theories scanning permutation group para-statistics.
But whatever the situation is, braid group statistics being the natural statistics in
low dimensions, one should expect, e.g., massive two-dimensional theories (or three-
dimensional gauge theories) with non-abelian braid group statistics to exist, which
we do not yet know by “lack of phantasy” in model building.

The braid group statistics underlying two-dimensional conformal models are in
fact the statistics of one-dimensional light-cone theories. By virtue of conformal co-
variance, space-time fields factorize as bilinear expressions in light-cone fields. The
role of the center of the conformal covariance group in this decomposition, related to
the solution of the “causality paradox” which appears at the transition from Euclidean
to relativistic conformal field theories, has been emphasized very early by J.A.Swieca
and his collaborators [11], while the discreteness of its spectrum was touched upon by
Lüscher and Mack [12]. The rediscovery of these crucial issues in a different framework
based on the analyticity properties of Euclidean correlation functions [13] initiated
the enormous recent progress in conformal field theory. Interpreting conformal block
functions as vacuum expectation values of light-cone fields interpolating different
superselection sectors, their monodromy properties turn into commutation relations
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(exchange algebra) of the latter [14, 15]. By a non-trivial interplay of the structure
constants of the two exchange algebras (on either light-cone), this decomposition
is compatible with local commutativity, or more general “conventional” commuta-
tion relations (as opposed to exchange algebra commutation relations with structure
constants depending on the charges among which the operators interpolate), of the
space-time fields [16, 17, 18].

For permutation group statistics it has been established [19] that the irreducible
sectors are in one-to-one correspondence with the representations of some compact
group, and that the selection rules for the composition and reduction of sectors coin-
cide with the duality theory of this group. The role of the compact group is that of a
global gauge symmetry; in fact there exists a field algebra [7] with a linear action of
the symmetry group, the invariant subalgebra of which coincides with the algebra of
observables, while charged (non-invariant) operators of the field algebra implement
the non-trivial superselection sectors.

The analogue of this symmetry structure for sectors with braid group statistics
(e.g., [20, 21]) is not yet completely understood. In many examples of conformal
field theories, one encounters the representation theory of “quantum groups” [22]
at the singular values of their parameter q, and various attempts have been made
to understand the action of these objects on field operators. But in the general
case, the situation remains quite unclear. In particular, one has few control over
the superselection rules for sectors with braid group statistics, and neither are the
composition rules for fractional spins, related to the statistics phases, understood. It
is the major aim of the present contribution to systematize various partial results on
this issue.

Some interesting results can be derived for abelian sectors (outer automorphisms
of the local algebra), and the selection rules for their composition with generic sectors;
these will be presented in Sect.3.

We shall point out the role of the Markov trace for the classification of statistics of
a single sector, and of the interplay of different sectors. In the special case of a sector
whose square contains only two inequivalent subsectors, the Markov trace is a positive
trace on the Hecke algebra. The classification of positive Markov traces on the Hecke
algebra leads to a quantization of the possible statistics of such a sector, and provides
detailed results about the other sectors generated by it. A similar analysis seems
possible for self-conjugate three-channel sectors [23], where one has to deal with the
Birman-Wenzl algebra [24]. These issues are treated in Sect.4.

In Sect.5 we discuss a “global” issue: the fascinating interplay of all sectors of a
theory. Every sector is assigned a vector in some “weight space”, defined in terms of
statistics operators and left-inverses. The significance of the weight vectors, which af-
ter some metric re-normalization we call “statistics characters” by analogy, generalizes
that of the characters of finite symmetry groups. The statistics characters diagonal-
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ize the fusion rules with a duality between eigenvectors and eigenvalues. Any two
weight vectors are either orthogonal or parallel; in particular, the weight vector of the
vacuum sector being the characteristic direction of sectors with permutation group
statistics, one finds that the latter cannot be “continuously” approached by braid
group statistics. If the theory contains only sectors with true braid group statistics,
then the matrix of weight vectors is unitary (up to a factor) and satisfies a remarkable
algebra together with the diagonal matrix of statistics phases. In conformal models,
this algebra coincides with the well-known modular transformation algebra for Vira-
soro characters of the local algebra [25, 26], but its occurrence in the general case
remains a mystery. In the other extremal case of a theory with permutation group
statistics only, the matrix of statistics characters becomes completely redundant and
should be substituted by the character table of the symmetry group.

We shall include proofs in the present contribution only for new results. For
details about well-known results we refer the reader to the original literature, or to a
pedagogical introduction [27].

2 Statistics and the Reduced Field Bundle

In this section we review the results of [8, 9] pertaining to the “reduced field bundle”.

Superselection sectors associated with localizable charges are most conveniently
described by C∗ morphisms ρ of the algebra of observables A. Identifying A with its
vacuum representation, charged sectors are thus represented in the vacuum Hilbert
space, with observables acting via the morphism:

A : Hρ 3 (ρ,Ψ) 7→ (ρ, ρ(A)Ψ) ∈ Hρ, (2.1)

where Hρ = H0 as a vector space, Ψ ∈ H0, and the “crossed product” notation
(ρ,Ψ) is used to indicate the nontrivial action of A. We denote by (ρ2|ρ1) the set of
operators intertwining from ρ1 to ρ2 (in the sense of the actions (2.1)).

The statistics of a sector is a unitary operator ερ = ε(ρ, ρ) ∈ ρ2(A)′ inducing a
representation of the infinite permutation group (in high dimensions) or braid group
(in low dimensions), see Sect. 4. More generally, for any two sectors there are unitary
intertwiners ε(ρ1, ρ2) from ρ1ρ2 to ρ2ρ1 given by the following

Definition and Proposition: Let ρi be localized in Oi. Let ρ̂i ∈ [ρi] be localized
in Ôi such that Ô1 and Ô2 are at space-like distance, and Ui ∈ (ρ̂i|ρi) unitary “charge
transporters”. Then the unitary statistics operator ρ2(U ∗1 )U ∗2U1ρ1(U2) is independent
of Ui and does not change if Ôi are continuously changed within the space-like com-
plements of each other. Thus, in dimension d ≤ 1 + 1, where O ′ has two connected
components, it can take only two values:
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ρ2(U ∗1 )U ∗2U1ρ1(U2) =:

{
ε(ρ1, ρ2) if Ô2 < Ô1

ε(ρ2, ρ1)∗ if Ô1 < Ô2

(2.2)

where some space-like ordering < has been chosen. In d ≥ 2 + 1 these two values
coincide. The following identities hold:

ρ3(ε(ρ1, ρ2))ε(ρ1, ρ3)ρ1(ε(ρ2, ρ3)) = ε(ρ2, ρ3)ρ2(ε(ρ1, ρ3))ε(ρ1, ρ2), (2.3)

ρ(T )ε(ρ3, ρ) = ε(ρ1ρ2, ρ)T = ε(ρ1, ρ)ρ1(ε(ρ2, ρ))T (2.4)

for T ∈ (ρ1ρ2|ρ3), and similar with ε(ρ, ρ′) replaced by ε(ρ′, ρ)∗ everywhere.

Definition: For ρ irreducible, ρ̄ a conjugate, R ∈ (ρ̄ρ|id) an isometry, the statis-
tics parameter of the sector [ρ] is

λρ := R∗ρ̄(ερ)R ∈ IC. (2.5)

The statistics parameter, as an element of (ρ|ρ) = ρ(A)′, is a scalar. It is independent
of the choice of the isometry R and depends only on the equivalence class of ρ. The
statistics parameters of conjugate morphisms coincide. We call the statistics non-
degenerate or finite, if λ(ρ) 6= 0. Then we denote by

ω(ρ)

d(ρ)
:= λ(ρ) = λ(ρ̄) (2.6)

the polar decomposition into a phase ω(ρ) (statistics phase) generalizing the distinc-
tion between bosons and fermions, and the inverse modulus d(ρ) ≥ 1 (statistical
dimension) generalizing the order of (permutation group) para-statistics.

Spin-Statistics Theorem [9]: For conformally covariant theories on the light-
cone,

ω(ρ) = exp 2πi hρ, (2.7)

relates the statistics phase ω(ρ) of a covariant sector to the conformal scaling dimen-
sions hρ(mod ZZ) of fields carrying charge [ρ].

Remarks: (1) Analogues are expected to hold also for the Poincaré spin of more
general low-dimensional exchange fields. So far, however, the validity of a Spin-
Statistics theorem is established only for covariance groups that can geometrically
change the sign of a space-like separation by real transformations: the conformal
group acting on the compactified light-cone, and the Poincaré group in 2 + 1 dimen-
sions. In fact, this action of the covariance group does not imply that the two statistics
operators (2.2) coincide, since in these situations the relevant ordering is defined with
respect to some reference frame (a “point at infinity” [9] resp. a space-like direction
[28]), but rather relates their difference (the “monodromy” operator ε(ρ1, ρ2)ε(ρ2, ρ1))
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to the covariance quantum numbers (spin).
(2) In conformal models, the statistical dimensions d(ρ) are known as the normal-
ized entries S0ρ/S00 of the modular matrix, measuring the relative dimensions of
representations of the chiral algebra [25, 26]. In general (confirming an old idea of
S.Doplicher), it measures the index Ind = d(ρ)2 of the inclusion of vonNeumann
factors ρ(A(O)) ⊂ A(O) [23].

Before we introduce the “reduced field bundle”, let us physically motivate the
abstract action of charged fields interpolating among different superselection sectors.

Let ρ, ρα, ρβ be irreducible transportable morphisms such that ρβ is equivalent to
some subrepresentation of ραρ. Let Te ∈ (ραρ|ρβ) be an isometry. For A ∈ A define
the linear operator (e, A) : Hρα → Hρβ by

(e, A) (ρα,Ψ) := (ρβ, T
∗
e ρα(A)Ψ). (2.8)

This corresponds to the action of A in the background charge ρα, addition of the
charge ρ, and subsequent projection and unitary transport by means of T ∗e ∈ (ρβ|ραρ)
of the state (ραρ, ρα(A)Ψ) ∈ Hραρ to a state in Hρβ . The collective label e (“super-
selection channel”) stands for the three irreducible morphisms involved as well as for
the specific intertwiner Te chosen, see below. We shall call s(e) = ρα, r(e) = ρβ the
“source” and the “range” of e (referring to the interpolation of the map (e, A)), and
c(e) = ρ the “charge” of e (referring to the charge added by the operator (e, A)), and
write e = (ρα, ρ, ρβ) if we want to specify only its source, charge, and range.

We shall now restrict ourselves to the set ∆0 of transportable morphisms, possess-
ing conjugates and having finite statistics. ∆0 is closed under composition and taking
subrepresentations [3, 4]. Moreover, if ρα, ρ ∈ ∆0 are irreducible, then ραρ contains
only finitely many inequivalent irreducible subrepresentations ρβ, each occurring with
finite multiplicity

(Nρ)
β
α ≡ dim(ραρ|ρβ) <∞. (2.9)

Definition: Let ∇0 ⊂ ∆0 be a countable collection of “reference” morphisms,
one per equivalence class of irreducible morphisms in ∆0 (or in some subset ∆ closed
under composition and taking subrepresentations and conjugates), id ∈ ∇0. For
every triple ρ, ρα, ρβ ∈ ∇0 let N = (Nρ)

β
α, and if N 6= 0 fix an orthonormal basis of

intertwiners Te = T i ∈ (ραρ|ρβ):

T i∗T j = δij, i, j = 1, . . . , N, (2.10)

(i.e. here and from now on the collective label e consists apart from its charge, source,
and range also of a multiplicity index i = 1, . . . , N . We shall never display the
multiplicity indices, and adopt an implicit summation convention for i whenever Te
and T ∗e occur in the same formula). Then

∑

e

TeT
∗
e = 1, (2.11)
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where the summation extends over r(e), while s(e), c(e) are kept fixed. If ρα or ρ = id,
choose Te = 1. If ρβ = id (hence ρα = ρ̄), call Te =: Rρ.
The reduced space bundle is the sum of Hilbert spaces

H =
⊕

ρ∈∇0

Hρ (2.12)

equipped with the scalar product 〈(ρ1,Ψ1), (ρ2,Ψ2)〉 = δρ1ρ2〈Ψ1,Ψ2〉 induced from the
scalar product of H0.
The reduced field bundle is the sum of vector spaces (extending over all superselection
channels e of ∇0)

F =
⊕

e

(e,A) (2.13)

with operators (e, A) ∈ F acting on states (ρα,Ψ) ∈ H by (cf. (2.8))

(e, A) (ρα,Ψ) = δραs(e)(r(e), T
∗
e ρα(A)Ψ). (2.14)

Proposition [8, 9]: F is a subalgebra of B(H). More specifically we have:
(i) ‖ (e, A) ‖ ≤ ‖ A ‖.
(ii) A is contained in F by the identification

A =
∑

e,c(e)=id

(e, A). (2.15)

(iii) The following two definitions for (e, A) to be localized in O (or: (e, A) ∈ F(O))
are equivalent:

(1) (e, A) commutes with A(O) acting on H.
(2) There are ρ̂ equivalent to ρ = c(e), ρ̂ localized in O, and U ∈ (ρ̂|ρ) unitary,

such that UA ∈ A(O).
(iv) The product of (ei, Ai) ∈ F with charges ρi = c(ei) is again in F :

(e2, A2) (e1, A1) = δs(e2)r(e1)

∑

e,f

De1◦e2;f,e (e, Af) ∈ F , (2.16)

where the finite sum extends over all f with s(f) = ρ1, c(f) = ρ2 and all e with
s(e) = s(e1), r(e) = r(e2) and c(e) = r(f) (that is, (e, Af) do the same interpolation
as the product on the left-hand-side, and carry charges contained in ρ1ρ2). The
notation e1 ◦ e2 indicates the condition s(e2) = r(e1). In (2.16), with ρα = s(e1):

Af := T ∗f ρ1(A2)A1 ∈ A, (2.17)

De1◦e2;f,e := T ∗e2T
∗
e1
ρα(Tf)Te ∈ (r(e)|r(e)) = IC. (2.18)

(v) The following commutation relations (exchange algebra) hold. Let (ei, Ai) ∈
F(Oi) have charges c(ei) = ρi, and r(e1) = s(e2). Then

(e2, A2)(e1, A1) =
∑

e′2◦e′1
R

(±)
e1◦e2;e′2◦e′1

(e′1, A1)(e′2, A2) if

{
O2 > O1

O1 > O2
(2.19)
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where c(e′i) = ρi, r(e
′
2) = s(e′1), r(e′1) = r(e2), s(e′2) = s(e1) ≡ ρα, and

R
(±)
e1◦e2;e′2◦e′1

:= T ∗e2T
∗
e1
ρα

(
ε(ρ2, ρ1)
ε(ρ1, ρ2)∗

)
Te′2Te′1 ∈ (r(e2)|r(e2)) = IC. (2.20)

(vi) If (e, A) ∈ F(O), then (e, A)∗ ∈ F(O):

(e, A)∗ =
d(ρβ)d(ρ)

d(ρα)
η(e) (e∗, ρ̄(A∗)Rρ), (2.21)

where for e = (ρα, ρ, ρβ) we set e∗ = (ρβ, ρ̄, ρα), and

η(e) := ρβ(R∗ρ)Te∗Te ∈ (ρβ|ρβ) = IC. (2.22)

(vii) If (ei, Ai) ∈ F(Oi), O1 < . . . < On, and s(ei+1) = r(ei), s(e1) = r(en) = id, then

(en, An) . . . (e1, A1) =
∏

i

ϑ(êi) (ê1, A1) . . . (ên, An), (2.23)

and a similar equation, with an additional factor
∏
ω(ρi), holds for On < . . . < O1.

Here, for e = (ρα, ρ, ρβ), we set ê = (ρ̄β, ρ, ρ̄α) and

ϑ(e) := R∗ραT
∗
ê ρ̄β(ε(ρα, ρ)Te)Rρβ ∈ (id|id) = IC. (2.24)

Remark: The last formula is a generalized “Weak Locality Condition” for vacuum
expectation values of operators in the reduced field bundle. Combining (vii) and (vi),
allows to express the complex conjugate of such a vacuum expectation value as the
vacuum expectation value of charge conjugate operators proportional to

(ē, ρ̄(A∗)Rρ), ē = ê∗ = ê∗ = (ρ̄α, ρ̄, ρ̄β),

times coefficients η, ϑ, etc. differing by
∏
ω(ρi) for the two orderings of the local-

izations as in (vii). This difference can be compensated by appropriate complex
transformations V(±iπ) of the covariance group taking x in −x, provided a Spin-
Statistics theorem relates the spin quantum numbers to the statistics phases ω, and
complex covariance transformations can be defined. These conditions being satisfied
for the case of conformal theories on the light-cone, one obtains the

TPC Theorem [9]: There is an anti-unitary operator Θ

Θ (e, A)Ω ∝ V(±iπ)(ē, ρ̄(A∗)Rρ)Ω if (e, A) ∈ F(O), O >
<

0 (2.25)

taking charge, source, and range of operators in F into their conjugates, and taking
F(O) into F(−O). The vacuum state is Θ-invariant.
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For various practical calculations, such as those leading to the TPC theorem, it is
important to note that the numerical coefficients are not independent. In particular
one has (for e = (ρα, ρ, ρβ))

η(e)η(e)∗ =
d(ρα)

d(ρβ)d(ρ)
11, η(e∗) = χ(ρ)

d(ρβ)

d(ρα)
η(e), (2.26)

ϑ(e)ϑ(e)∗ = 11, ϑ(ê) =
χ(ρβ)

χ(ρα)ω(ρ)
ϑ(e)∗, (2.27)

ϑ(e)∗η(e) =
χ(ρα)

χ(ρβ)χ(ρ)
ϑ(ē)∗η(ē), (2.28)

where
χ(ρ) = χ(ρ̄)∗ := ω(ρ) R∗ρ̄ε(ρ̄, ρ)Rρ = d(ρ) ρ̄(R∗ρ̄)Rρ (2.29)

are characteristic phases which take values +1 resp. −1 if ρ is a selfconjugate real
resp. pseudoreal sector, and which may be put to 1 by independent choice of Rρ, Rρ̄

if ρ is inequivalent to its conjugate.

The structure constants R (2.20) of the exchange algebra (known as “braid matri-
ces” [17, 29] in conformal field theory) and D (2.18) of the operator product expansion
(known as “duality matrices” [29]) satisfy the polynomial (“braid” and “pentagon”)
equations known from conformal field theory; these equations are in fact nothing but
the intertwiner identities (2.3) and (2.4) evaluated on “path spaces” of intertwiners
Te1 . . . Ten . Actually, the numerical values depend on the reference morphisms ∇0 and
the intertwiners Te chosen in the definition. While their transformation behaviour is
manifest, their actual values are of limited relevance. The intrinsic quantities are, e.g.,
eigenvalues and the Markov traces associated to the statistics (see Sect. 4). Thus,
if E ∈ ρ1ρ2(A)′ is a minimal projection on an irreducible subrepresentation of ρ1ρ2

equivalent to ρ, i.e. if E = TT ∗ where T ∈ (ρ1ρ2|ρ) is an isometry, then the following
equations hold:

ε(ρ2, ρ1)ε(ρ1, ρ2)E =
ω(ρ)

ω(ρ1)ω(ρ2)
E, (2.30)

R∗1ρ̄1(E)R1 =
d(ρ)

d(ρ1)d(ρ2)
. (2.31)

The R matrices possess various symmetries, e.g.

R
(+)
e1◦e2;f2◦f1

=
ω(ρα)ω(ργ)

ω(ρβ)ω(ρδ)
R

(−)
e1◦e2;f2◦f1

, (2.32)

where ρα = s(e1) = s(f2), ρβ = r(e1) = s(e2), ργ = r(e2) = r(f1), ρδ = r(f2) = s(f1),
and

R
(±)
e1◦e2;f2◦f1

=
η(f1)

η(e1)
R

(∓)
e2◦f∗1 ;e∗1◦f2

=
η(f1)η(f2)

η(e1)η(e2)
R

(±)
f∗1 ◦f∗2 ;e∗2◦e∗1 (2.33)
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=
ϑ(ê1)ϑ(ê2)

ϑ(f̂1)ϑ(f̂2)
R

(±)

ê2◦ê1;f̂1◦f̂2
(2.34)

=
η(f1)η(f2)

η(e1)η(e2)

ϑ(f̄1)ϑ(f̄2)

ϑ(ē1)ϑ(ē2)
R

(±)

f̄2◦f̄1;ē1◦ē2 , (2.35)

where for simplicity 1
η
, 1
ϑ

stand for η−1, ϑ−1 if N(e) > 1.

In fact, it can be shown that (2.23) and (2.32) for ρα = id are equivalent to
the “pentagon identity” in the following sense. Given a set of fusion rules and a
collection of R matrices compatible with these fusion rules and satisfying the braid
equations as well as (2.32) for ρα = id (“on-vacuum monodromy”) for some phases ω.
Then matrices D satisfying the pentagon equations with R exist if and only if the R
matrices of the inversion braids (σ1 . . . σn−1) . . . (σ1σ2)σ1 take the values specified by
(2.23):

∏
ϑ(ê)δe′ê for some coefficients ϑ. Actually it is sufficient that the latter holds

for n ≤ 5, the remaining identities being a consequence, as well as the remaining
equations (2.32).

The statement may be put differently. Given a set of fusion rules and a collection of
R matrices satisfying the braid equations, the on-vacuum monodromy and the weak-
locality property (2.23). Then it is possible to define abstract unitary resp. isometric
operators ε(ρ1, ρ2) and Te by their action on path spaces (in the sense of [30]) allowed
by the fusion rules, and to define “parallel transports” ρ on these operators, such
that ε(ρ1, ρ2) intertwines from ρ1ρ2 to ρ2ρ1 and Te from ρβ to ραρ and (2.3), (2.4) are
satisfied.

3 Automorphisms

In this section we present some formulae for the behaviour of statistics phases (and
thus selection rules for fractional spins) under the composition of generic sectors with
abelian sectors (automorphisms), and give criteria for the existence of representatives
τ ∈ [τ ] satisfying τ ν = id if [τ ν ] = [id]. These results have been derived in [18]. We
first recall some well-known results [3].

Lemma: (i) The following four definitions for τ ∈ ∆0 irreducible to be an auto-
morphism are equivalent:

(1) τ possesses an inverse τ−1 ∈ ∆0.
(2) τ 2 is irreducible.
(3) ετ is a scalar (hence ετ = λ(τ) = ω(τ)).
(4) d(τ) = 1.

(ii) For τ ∈ ∆0 an automorphism and ρ ∈ ∆0 irreducible, ρτ ' τρ are again irre-
ducible, d(ρτ) = d(τρ) = d(ρ), and

ε(ρ, τ)ε(τ, ρ) = ε(τ, ρ)ε(ρ, τ) =
ω(τρ)

ω(τ)ω(ρ)
=: Ωτ (ρ). (3.1)
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(iii) The equivalence classes of automorphisms in ∆0 define an abelian group Γ0 by
class multiplication: [τ1][τ2] = [τ1τ2], and [τ ]−1 = [τ−1] = [τ̄ ].

Then the phases Ωτ (ρ) are multiplicative both with respect to τ and ρ:

Proposition: Let ρ, ρi ∈ ∆0 be irreducible, τ, τi ∈ ∆0 automorphisms. Then
(i)

Ωτ1τ2(ρ) = Ωτ1(ρ)Ωτ2(ρ). (3.2)

(ii) If ρ is equivalent to a subrepresentation of ρ1ρ2, then

Ωτ (ρ) = Ωτ (ρ1)Ωτ (ρ2). (3.3)

For the statistics phases of automorphisms one finds

Corollary: Let τ ∈ ∆0 be an automorphism.
(i)

ω(τm) = ω(τ)m
2

. (3.4)

(ii) Suppose [τ ν ] = [id]. Then

ω(τ)ν
2

= ω(τ)2ν = 1. (3.5)

If ν is odd, or if for some odd µ there is a fixpoint equivalence class of τ µ : [τµρ] = [ρ],
or if τ has permutation group statistics, then

ω(τ)ν = 1. (3.6)

Longo [23] has introduced the spectrum of the restriction of the left-inverse to
(ρν |id) ⊂ (ρν+1|ρ)

φ : (ρν |id)→ (ρν |id)

as an intrinsic characterization of the generic sector ρ. For ρ = τ an automorphism,
this map is just ω(τ)ν = ±1. The significance of this sign is given by the following

Proposition: (i) Let τ ∈ ∆0 be an automorphism such that [τ ν ] = [id]. If and
only if ω(τ)ν = 1, there is τ̃ ∈ [τ ] satisfying τ̃ ν = id.
(ii) Let a subgroup Γ =

⊗
i ZZνi (ZZ0 ≡ ZZ) of Γ0 be generated by τi with [τ νii ] = [id].

If and only if ω(τi)
νi = 1, one may choose τ̃i ∈ [τi] generating a subgroup of ∆0

isomorphic to Γ by individual multiplication.

Remarks: (1) In conformal field theories, automorphisms with the obstruction,
i.e. ω(τ)ν = −1, are encountered. In SU(2) WZW models [31] of level k, the self-
conjugate automorphisms have scaling dimensions k

4
, thus by the spin-statistics theo-

rem ω(τ)2 = (−1)k. More generally, in SU(N) WZW models at odd level k there are
automorphisms of order ν = N , which have ω(τ)ν = −1. In contrast, in all unitary
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minimal models [13] and coset models [32] of SU(N) as well as in the WZW models
of even level, the fixpoint condition of the Corollary applies, hence ω(τ)ν = 1 for all
automorphisms of order ν, and the obstruction is absent.
(2) It is possible to construct two-dimensional space-time fields with conventional
commutation relations from exchange fields on the light-cone [18]. These fields carry
charges on either of the two chiral factors which are conjugate to each other up to
an additional abelian “excess charge”. The latter must be an unobstructed automor-
phism.

4 Markov Traces

Let ρ be an irreducible sector in ∆0, φ its unique left-inverse

φ(A) = R∗ρ̄(A)R. (4.1)

Proposition: (i) The map

ε(∞)
ρ : σi 7→ ρi−1(ε(ρ, ρ)) (4.2)

defines a homomorphism of B∞ =
⋃
Bn (with the natural embedding Bn ⊂ Bn+1)

into M∞ =
⋃
ρn(A)′.

(ii) The map
ϕ := lim

N→∞
φN : M∞ → IC (4.3)

converges and defines a positive trace state in M∞.
(iii) The map

trρ := ϕ ◦ ε(∞)
ρ : B∞ → IC (4.4)

is a positive Markov trace with the property

trρ(b1b2) = trρ(b1)trρ(b2) if

{
b1 is a word in σ1, . . . , σn−1,
b2 is a word in σn, . . . , σm.

(4.5)

(iv) trρ is independent of the choice of ρ in its equivalence class, and

trρ̄ = (trρ ◦ I)∗ (4.6)

where I is the homomorphism of the braid group generated by σi 7→ σ−1
i .

The property (4.5) implies the usual Markov property (choosing b2 = σn and using
trρ(bi) = φ(ερ) = λ(ρ)), but is much stronger; it seems not to have attracted much
attention so far. The usual Markov property in general does not determine the trace
state: even if the spectrum µ1, . . . , µr of ερ is known, the values of trρ on infinitely
many braids, e.g.

σν1
1 . . . σνnn , 2 ≤ νi ≤ r − 2,
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may be independently chosen. It might turn out that with the stronger property (4.5)
the Markov trace is determined in terms of finitely many parameters [23]. This would
be of great importance for the general classification problem.

The central point in the classification of statistics by their Markov traces is the
fact that not all values of the parameters admit positive Markov traces. In the case of
permutation group statistics, only d ∈ IN (or d =∞) are compatible with positivity;
for d ∈ IN the Markov trace is just the ordinary trace over tensor powers of IC d [3], the
latter playing the role of a representation space of the compact symmetry group [7].
In fact, (i)–(iii) of the Proposition and the discussion below remain valid, if ρ is only
assumed irreducible and transportable, and if φ is any of its left-inverses (which form
a compact convex set; in this contribution we shall not discuss the general theory of
left-inverses, see e.g. [3, 27]). At least in the following special case, which covers the
case of permutation group statistics, the quantization of the admissible values of the
statistics parameters and its implications on the superselection rules for powers of ρ
imply the existence of a conjugate and in particular the uniqueness of the left-inverse.

Let us now discuss the special case of a sector ρ such that ερ has two eigenvalues

(ερ − µ1)(ερ − µ2) = 0, (4.7)

which is the case, e.g., if ρ has permutation group statistics, or if ρ2 has only two
inequivalent subrepresentations ρ1, ρ2. (In the latter case µ2

i = ω(ρi)ω(ρ)−2.) Then
the linear hull of the image of B∞ under ε(∞)

ρ reduces to a Hecke algebra [10]. The
positive Markov traces on Hecke algebras are quantized [8, 10], and one obtains the
following results (for µ1 6= µ2):

Proposition: Let E
(n)
i be the spectral projectors on the simultaneous eigenspaces

of ερ(σl), l < n, with eigenvalues µi. Then there are two integers k1, k2 ≥ 2 (one of
which may be infinite, in which case some of the statements below trivialize), such

that E
(ki+1)
i = 0 and E

(ki)
i 6= 0. These integers are related to the spectrum of ερ and

to the statistics parameter by

µ1

µ2

= − exp
[
± 2πi
k1+k2

]
=: −q, (4.8)

ω(ρ) = −µ1 exp
[
∓πi k1+1

k1+k2

]
= −µ2 exp

[
±πi k2+1

k1+k2

]
, (4.9)

d(ρ) = [k1]q = [k2]q, (4.10)

where [k]q =
qk/2 − q−k/2
q1/2 − q−1/2

.

Continuing the analysis one computes

ϕ(E
(ki)
i ) = d(ρ)−ki, (4.11)
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ερ(Cl)E
(ki)
i = µ

l(l−1)
i E

(ki)
i , l ≤ ki, (4.12)

where Cl = (σ1 . . . σl−1)l is the generator of the center of Bl.
On the other hand, consider the following decomposition of unity:

1 =
∑

ω

Eω, Eω =
∑

ξ, ω(ξ)=ω

TξT
∗
ξ , (4.13)

where ξ = e1◦. . .◦en is a path of length n of superselection channels with c(ei) = ρ and
s(e1) = id, ω(ξ) = (ω(r(e1)), . . . , ω(r(en))) is the trajectory of statistics phases along
the path, and Tξ = Te1 . . . Ten ∈ (ρn|r(en)) is the corresponding path intertwiner. One
has, generalizing (2.30) and (2.31) [8, 27]

ϕ(TξT
∗
ξ ) =

d(r(en))

d(ρ)n
, (4.14)

ερ(Cl)Tξ =
ω(r(en))

ω(ρ)n
Tξ. (4.15)

Now one can show that a path ξ of length ki has the trajectory ω(ξ) = ωi =

(ω(ρ)lµ
l(l−1)
i )l=1,...,ki if and only if ερ(σn)Tξ = µiTξ for all n < ki. The “if” state-

ment is obvious from (4.15), while the “only if” statement makes repeated use of
the eigenvalue equation (4.7). Hence the projectors Eωi

are the maximal projectors
satisfying

ερ(σn)E = µiE,

and thus coincide with E
(ki)
i by definition of the latter:

E
(ki)
i =

∑

ξ, ω(ξ)=ωi

TξT
∗
ξ .

Then by (4.11) and (4.14) we conclude that there is (for every i = 1, 2) precisely
one path ξi with ω(ξi) = ωi, ending at a sector τi with d(τi) = 1, hence τi is an
automorphism.

Corollary: For i = 1, 2 there are unique paths ξi = ei1 ◦ . . . ◦ eiki such that

E
(ki)
i = TξiT

∗
ξi
. (4.16)

The sectors ρil = r(eil), l ≤ ki, contained in ρl have statistics phases

ω(ρil) = ω(ρ)lµ
l(l−1)
i , (4.17)

and ρiki contained in ρki is an automorphism τi. In particular, τ−1
i ◦ρi(ki−1) is conjugate

to ρ.
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Corollary: If either of the automorphisms τi, say τ1, is the vacuum sector id,
then (by virtue of (4.17) and (4.9))

ω(ρ)k
2
i = exp

[
∓πik3

1−k1

k1+k2

]
. (4.18)

There are realizations [31, 32] in conformal field theory of these trajectories in
WZW and coset models based on SU(N) at level L, where N = k1, L = k2.

Let us now discuss the special case of a sector ρ such that ρ2 has three inequivalent
irreducible subrepresentations τ, ρ1, ρ2, where τ is an automorphism. This situation
has first been treated by Longo [23] for the self-conjugate case τ = id 1. Then ερ has
three eigenvalues, which we assume all different:

(ερ − µ0)(ερ − µ1)(ερ − µ2) = 0, (4.19)

where µ2
0 = ωτ/ω

2, µ2
k = ωk/ω

2 by (2.30) with ω, ωτ , ωk the statistics phases of ρ, τ, ρk
respectively, k = 1, 2. Using (3.2) and (3.3) one can derive Ωτ (ρ) = ωτ . If we denote

Gi = ρi−1(ερ) = (G−1
i )∗, (4.20)

Ei = ρi−1(TT ∗) = E∗i = E2
i , (4.21)

where T ∈ (ρ2|τ) is an isometry and hence Ei the projector onto the eigenvalue µ0

of Gi, we find from the properties of statistics operators, intertwiners, and automor-
phisms the equations

Ei =
µ0

(µ0 − µ1)(µ0 − µ2)
(Gi − (µ1 + µ2) + µ1µ2 G

−1
i ),

EiGi = µ0Ei,
(4.22)

GiGi±1Gi = Gi±1GiGi±1,
EiGi±1Gi = ωτ EiG

−1
i±1G

−1
i = dωµ0 EiEi±1,

(4.23)

EiGi±1Ei = ω d−1Ei,
EiEi±1Ei = d−2Ei,

(4.24)

GiGj = GjGi

EiEj = EjEi

}
if |i− j| ≥ 2, (4.25)

where d is the statistical dimension of ρ. Multiplying (4.22) with Ei+1 from both
sides, and multiplying

G±1
i Ei+1G

∓1
i = G∓1

i+1EiG
±1
i+1

(which holds for G, G−1, and 1 in the place of E, and hence holds also for E) with

Ei from the right and with E
(k)
i , the spectral projectors of Gi onto the eigenvalues

1The assumption of self-conjugacy will also be dropped in the published version of [23].
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µk, k = 1, 2, from the left, one obtains identities among the parameters, which after
some algebra read:

(µ1µ2)2 = ωτ , (4.26)

d = ζ−2µ0ω +
ζ−1ω − ζω−1

ζ−1µ1 − ζµ−1
1

≡ η (1 +
r − r−1

q − q−1
), (4.27)

where ζ is a fourth root of ωτ chosen such that µ1µ2 = −ζ2, implying that η := ζ−2µ0ω
is just a sign to be determined by positivity of d, and where we have introduced
q := ζ−1µ1, r := ζµ−1

0 . Re-normalizing

gi = ζ−1Gi, (4.28)

ei = ηd Ei, (4.29)

the equations (4.22–27) turn into the defining relations of the Birman-Wenzl algebra
C∞ (as given in [24] with the two parameters q, r introduced above). The map
φ : Cn+1 → Cn defined by enxen = ηd φ(x)en coincides with the left-inverse in the
identification via ε(∞)

ρ , and converges to a positive Markov trace on the Birman-Wenzl
algebra.

Wenzl [24] gives a complete list of values q, r consistent with positivity of the
Markov trace. Except for a continuous one-parameter solution r = q (hence d = 2),
which appears to be realized in conformal models with a ZZ2-orbifold construction
from U(1)-current algebra, all other solutions are discrete with q being (up to a sign)
simple roots of unity, and r some integer power thereof. There are self-conjugate
(τ = id) realizations of these series in conformal WZW models [31] with current
algebras of orthogonal and symplectic Lie groups.

5 Statistics Characters

Consider a finite group G. Let Ri denote the inequivalent irreducible representations
of G, and Cj the conjugacy classes of G. Then the character table

Xij = χi(gj), (5.1)

where χi is the character of Ri, and gj a group element in Cj, satisfies

X0j = 1, Xi0 = dim(Ri) = di, (5.2)

XijXkj =
∑

m

Nm
ikXmj, (5.3)

where R0 is the trivial representation, C0 the trivial conjugacy class, and Nm
ik are the

multiplicities of Rm in Ri ⊗Rk. In particular

∑

m

Nm
ik dm = didk. (5.4)
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The matrix Yij = Xijcj, cj = |Cj|1/2 satisfies

Yı̄j = Yī = Y ∗ij , (5.5)

Y Y † = Y †Y = |G|11, (5.6)

Nm
ik =

∑

j

YijYkjY
−1
jm

Y0j

=
1

|G|
∑

j

YijYkjY
∗
mj

Y0j

, (5.7)

where Rı̄ is the representation conjugate to Ri, C̄ the inverse conjugacy class of Cj,
and |G| = ∑

d2
i =

∑
c2
j the order of the group.

We shall now define a generalization of the group characters χi describing the
superselection structure of a theory with braid group statistics.

Let [ρi] denote the equivalence classes of irreducible superselection sectors in ∆0,
or some subset ∆ ⊂ ∆0 closed under conjugation and composition with subsequent
reduction. Let [ρı̄] = [ρ̄i], [ρ0] = [id], and N k

ij denote the multiplicity of [ρk] in [ρiρj],
di = dı̄ = d(ρi), ωi = ωı̄ = ω(ρi). The following is well known:

Lemma: (i)

Nk
0j = δjk, Nk

ij = Nk
ji = N ̄

ik̄
= N k̄

ı̄̄. (5.8)

(ii) ∑

k

Nk
ijN

m
lk =

∑

r

N r
ilN

m
rj , (5.9)

(iii) ∑

k

Nk
ijdk = didj. (5.10)

In particular, for fixed i, j there are only finitely many k such that N k
ij 6= 0.

Definition: Let ρi ∈ [ρi], and φi the unique left-inverses of ρi. The matrices Yij
are independent of the choice of ρi ∈ [ρi]:

Yij := didj φj(ε(ρj, ρi)
∗ε(ρi, ρj)

∗). (5.11)

Lemma: (i)
Y0i = Yi0 = di. (5.12)

(ii)
Yij = Yji = Y ∗ī = Yı̄̄. (5.13)

(iii)

Yij =
∑

k

Nk
ij

ωiωj
ωk

dk. (5.14)

(iv)
1

dj
YijYkj =

∑

m

Nm
ikYmj. (5.15)
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Proof: (i) is obvious from the definition. (iii) follows by

φj(ε(ρj, ρi)
∗ε(ρi, ρj)

∗∑

e

TeT
∗
e ) =

∑

e

ωiωj
ωk

φj(TeT
∗
e ) =

∑

k

ωiωj
ωk

Nk
ij

dk
didj

,

where e = (ρj, ρi, ρk). The first equation of (ii) follows from (iii), while for the second
we use (2.4) (with ρ3 = id) to compute

Yij = φi(Yij) = didj φi[R
∗
j ρ̄j(ε(ρj, ρi)

∗ε(ρi, ρj)∗)Rj]
= didj R

∗
i ρ̄i[ρi(R

∗
j )ε(ρ̄j, ρi)ε(ρi, ρ̄j)ρi(Rj)]Ri

= didj R
∗
j [φi(ε(ρ̄j, ρi)ε(ρi, ρ̄j)]Rj = R∗jY

∗
̄iRj = Y ∗ī .

For (iv) one uses properties of left-inverses [3, 8, 27] to compute

1

dj
YijYkj = djdidk φi(ε(ρi, ρj)

∗φk(ε(ρk, ρj)
∗ε(ρj, ρk)

∗)ε(ρj, ρi)
∗)

= djdidk φiφk(ε(ρkρi, ρj)
∗ρj(

∑
e TeT

∗
e )ε(ρj, ρkρi)

∗)
= djdidk

∑
e φiφk(Teε(ρm, ρj)

∗ε(ρj, ρm)∗T ∗e )
= djdidk

∑
e φiφk(TeT

∗
e )φm(ε(ρm, ρj)

∗ε(ρj, ρm)∗)

= djdidk
∑

m

Nm
ik

dm
didk

Yjm
1

djdm
=
∑

m

Nm
ikYmj,

where e = (ρk, ρi, ρm).

We call the vectors Yj with components Yij the “weight vectors” and χi with
components Xij = 1

dj
Yij the “statistics characters” of the sector [ρi], because the

latter satisfy the equations (5.2) and (5.3) like group characters, with the statistical
dimensions d(ρi) in place of the dimensions of representations dim(Ri). Note that (iv)
states that Yj are simultaneous eigenvectors of the fusion matrices Ni (with matrix
elements Nm

ik ) with eigenvalues Xij = 1
dj
Yij.

The following statements are only meaningful if the number of inequivalent irre-
ducible sectors is finite N <∞.

Lemma: Any two weight vectors Yl, Yj are either orthogonal (in the natural
metric 〈 , 〉 of ICN ) or parallel:

〈Yl, Yj〉 = 0 or djYl = dlYj. (5.16)

Proof: Contracting (5.15) with Y ∗lk and using (5.8) and (5.13), one gets

d−1
j Yij〈Yl, Yj〉 = 〈Yl, NiYj〉 = d−1

l Yil〈Yl, Yj〉,

from which the claim follows.

We call sectors with weight vector Yi parallel to Y0 “degenerate”. Thus for degen-
erate sectors

Yij = didj. (5.17)
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We shall first discuss the case when there are no degenerate sectors except [ρ0] =
id, and then the general case.

Proposition: The following statements are equivalent:
(i) [ρ0] = id is the only degenerate sector.
(ii) The matrix Y is invertible.
(iii) The number σ :=

∑
i d

2
iω
−1
i satisfies |σ|2 =

∑
i d

2
i . Defining matrices

S := |σ|−1Y, T :=

(
σ

|σ|

)1/3

Diag(ωi) (5.18)

these satisfy the algebra
SS† = TT † = 11N , (5.19)

TSTST = S, (5.20)

S2 = C, TC = CT = T, (5.21)

where Cij = δī is the conjugation matrix. Moreover

Nm
ik =

1

|σ|2
∑

m

YijYkjY
∗
mj

Y0j

=
∑

m

SijSkjS
∗
mj

S0j

. (5.22)

Proof: (iii) implies (ii) implies (i) is obvious. Assume that (i) holds. We shall
prove (iii). Contracting (5.15) with dj we get

〈Yı̄, Yk〉 =
∑

m

Nm
ik

∑

j

Ymjdj = N0
ik

∑

j

d2
j = δı̄k

∑

j

d2
j ,

hence Y Y † = (
∑
d2
j)11. Next, contracting (5.14) with djω

−1
j we get (with (5.8), (5.10))

Yij
dj
ωj

=
∑

k


∑

j

N ̄
ik̄
dj


 ωi
ωk
dk = σ · diωi,

hence |σ|2 =
∑
d2
j , proving (5.19). Finally, contracting (5.15) with djω

−1
j we get

∑

j

Yij
1

ωj
Ykj = σ

∑

m

Nm
ikωmdm = σ · ωiωkY ∗ik,

which after division by ωiωk and complex conjugation implies (5.20); (5.21) is easily
derived from (5.13), and (5.22) from (5.15).

Remarks: (1) These equations generalize the properties of the character table
(5.5), (5.6), and (5.7). However, for a nonabelian finite group, Yij is not symmetric,
and a diagonal matrix T with the above properties does not exist. Thus, a theory
without degenerate sectors yields a“self-dual” object that is more symmetric than a
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group. While in the case of a group, cj and di are related by a generalized Fourier
transformation, in the self-dual case at hand the “conjugacy classes” Cj are in 1 : 1
correspondence with the “representations” Ri, and

cj ≡ “|Cj |1/2” = dj ≡ “ dim(Rj)”.

(2) Conformal models [31, 32] with modular invariant partition functions [25] are of
the self-dual type described in the Proposition. In these models, the matrices S and
T given by (5.14) and (5.18) describe the modular transformations τ 7→ −τ−1, τ 7→
τ + 1 of the Virasoro characters χVir

i (τ) = q−
c
24Tri q

L0 , q = exp 2πiτ , and σ∗/|σ| =
exp 2πi c

8
. The surprising observation that the modular S matrix “diagonalizes the

fusion rules”, i.e. (5.15) and (5.22), was in this context first made by Verlinde [26]
and proven in [29]. It is even more surprising that we could derive the same algebra
on completely general grounds, only assuming the absence of degenerate sectors. The
question arises:

Question: What is the physical significance of the algebra (5.19 – 21) in a general
low-dimensional quantum field theory, in the absence of conformal covariance and
modular invariance?

We do not have an answer, but we expect it to touch upon some very deep physical
duality concept, see e.g. [21].

Let us now turn to the case that there are degenerate sectors.

Lemma: A sector [ρi] is degenerate if and only if the monodromy operator
ε(ρi, ρj)ε(ρj, ρi) = 1 for every other sector [ρj].

Corollary: (i) If [ρi] is degenerate, then ρi has permutation group statistics, and
ωi = ±1, di ∈ IN .
(ii) In high dimensions, where statistics are permutation group statistics, every sector
is degenerate.

Proof: The “if” statement of the Lemma is obvious from the definition (5.11); for
the “only if” statement remark by comparing (5.10) and (5.14) that Yij = didj is only
possible if

ωk
ωiωj

= 1 whenever Nk
ij 6= 0.

But ωk/ωiωj exhaust the spectrum of the monodromy operator. (i) of the Corollary
follows from ερ = ε∗ρ and the quantization of statistics parameters for permutation
group statistics [3]; (ii) is obvious.

Remark: Although we have motivated our analysis by the example of the character
table of a group, our definition (5.11) is “blind” for the symmetry group associated

20



with permutation group statistics [7]. The latter must be identified “by hand”, e.g.
from its representation theory given by N k

ij, while it would be most desirable to
compute its character table directly from the statistics, by some formula as powerful
in the presence of degenerate sectors as (5.11) is in their absence. In fact, it is well
known [33] that every (finite) set of commuting fusion matrices Ni satisfying (5.8)
and (5.9) (an abelian “hypergroup”) possesses a system of simultaneous eigenvectors
with the dual role of components and eigenvalues as in (5.15). However, in general
no formula like (5.14) is known to determine these eigenvectors, and in particular
it is impossible to assign phases ωi to the elements of the hypergroup with similar
properties as described here.

Lemma: Two sectors [ρj], [ρk] have parallel weight vectors djYk = dkYj if and
only if there is some degenerate sector [ρi] with Nk

ji 6= 0.

Proof: The claim becomes evident, if the first equality in the proof of the Propo-
sition above is rewritten (replacing i→ ̄, m→ i):

〈Yj, Yk〉 =
∑

i

Nk
ji〈Y0, Yi〉.

Corollary: (i) The degenerate sectors are a subset of sectors with permutation
group statistics, closed under composition with subsequent reduction, and conjuga-
tion.
(ii) Every “family” of sectors with parallel weight vectors is closed and irreducible
under the composition with degenerate sectors with subsequent reduction.

The structure of the families is not yet completely understood. However, the
following is suggested by our results [34]:

Conjecture: From [7] we know that the subset of degenerate superselection sec-
tors, having permutation group statistics, allows the construction of a (Bose-Fermi
ZZ2-graded) field algebra F , such that A ⊂ F is the fixpoint subalgebra of F with
respect to the action of a compact global gauge group G, and the degenerate sectors
of A are in 1 : 1 correspondence with the irreducible representations of G realized in
F . Then the families of non-degenerate superselection sectors of A arise as irreducible
sectors (in a sense to be generalized for graded local nets) of F , and the weight vectors
of this superselection structure are of the self-dual type described in the Proposition.
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