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Within the restricted context of conformal QFTh 2 we present a systematic analysis of the 
exchange algebras of light-cone fields which result from the previously studied global decomposi- 
tion theory of Einstein-causal fields. Although certain aspects of the representation theory of 
exchange algebras with their Artin braid structure-constants appear in our illustrative examples 
(minimal and WZW models), our main interests are algebraic aspects. We view the present work 
as a new non-lagrangian (non-hamiltonian) approach to non-perturbative QFTh. 

1. Introduction 

The subject of this paper is an attempt to overcome the longstanding problem of 
dynamics in the algebraic approach [1] to non-perturbative local Quantum Field 
Theory (QFTh). The basic structure of this approach is the "local net", i.e. the 
association of a C* algebra of local observables with every space-time region. Two 
operators  localized in regions with space-like separation are required to commute 
with each other. This is the axiom of locality (Einstein Causality). Space-time and 
inner symmetries are formulated algebraically in terms of endomorphisms of the 
local net. The representation theory led to the understanding of important concepts 
in local QFTh,  such as superselection rules and the relation between spin and 
statistics. The theory of (massive) particle scattering has been given a rigorous 
meaning via the LSZ formalism [2]. Representations with temperature T > 0 equilib- 
r ium states have been established [3], which are inequivalent to the vacuum 
representation. 

The most unsatisfactory feature of this algebraic approach, however, is its failure 
in specifying and describing interactions. While Einstein Causality states the ab-  

s e n c e  of interactions at space-like distances, the dynamics of a theory should be 
encoded in the deviation from commutativity of operators localized with non- 
space-like separation. 

This is precisely the idea of this paper. Taking advantage of the peculiar 
light-cone structure of conformal QFTh in two dimensions (CQFTh2), we discuss 
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the "exchange algebra" as a non-commutative bilinear algebra of light-cone opera- 
tors, which entails the property of Einstein Causality for local fields (provided some 
numerical relations are satisfied). At the same time it codifies true dynamical 
information in the sense that it specifies time-like non-commutativity in terms of 
monodromy behaviour of n-point functions. Referring directly to conformal fields 
at the critical point, it is of genuinely non-perturbative character. Moreover, it 
contains explicit information about the "fusion rules" and implicit information 
about the anomalous scaling dimensions of the fields. 

It is our intention to conceptualize earlier work of the authors [4] who were 
originally led to exchange algebras from the global decomposition theory of local 
operators, which in turn resulted - as a seasonable homologue of today's "confor- 
mal blocks" - from the resolution of the "Einstein Causality Paradox" [5]. There is 
a second path to exchange algebras pursued by FrShlich [6], who started from the 
euclidean formulation and studied the monodromy properties of multivalued eu- 
clidean Green functions. We acknowledge many stimulating discussions with 
J. Fr~hlich - who also introduced us into some of the mathematics, in particular 
Jones' work - about the questions which await an answer through the study of these 
algebraic structures, and new questions arising. 

We put particular emphasis on the consistency constraints on conformal-exchange 
algebras, and thus on local algebras to be constructed from them. There are two 
types of consistency conditions, which are non-trivial to satisfy on the one hand, 
and sufficiently restrictive on the other hand, to single out only "a  few" out of "all 
imaginable dynamics" of CQFTh 2. These include important classes of previously 
classified models. The consistency conditions are: (i) the associativity of the ex- 
change operator algebra, which requires the "structure constants" to define 
representations of the Artin braid groups; and (ii) the compatibility with conformal 
transformation behaviour, which imposes additional relations on the braid-represen- 
tation matrices. 

We shall not try to tackle the complete classification problem of solutions to these 
conditions. We shall rather exploit the virtues of the rich structure implied by the 
conditions. In particular, we can give operator product expansions a meaning 
off-vacuum which is as satisfactory as on-vacuum, thus filling a gap in the old 
"boots t rap  program". 

2. Concepts and notions of CQFTh z 

Let us define a conformal quantum field theory in two dimensions by the 
following postulates, to be considered as working hypotheses rather than axioms. 

(1) The conformal group has a unitary implementation U in Hilbert space. In 
particular there are hermitian infinitesimal generators P ±, D ±, K ± commuting with 
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a basis of field operators ~ ( x )  = ~+~ (x+, x_) as follows 

i [P+ ,  q~(x+,-)]  = 8 + ~ ( x + , . ) ,  

i [D+,q~(x+ ,  .)] = (x+0++ d+)0~(x+ , - ) ,  

i [K+,  q~(x+, .)] = (x2+ O+ + 2x+d+)q~,(x+,-) ,  (2.1) 

and likewise for P_,  D_, K_. Here x + = x ° + x I are the light-cone coordinates, and 
d+ are the fight-cone scaling dimensions of the conformal field ~ .  

The light-cone momenta P_+ have nonnegative spectra. There is a unique vacuum 
state $2 annihilated by P_+, D _+, K +. 

(2) The stress-energy tensor is a local field O,~(x) = Q , ( x )  which is conserved: 
O"O~ = 0, which has canonical dimension 2, and the time components of which are 
the energy-momentum densities: f d x  I Oo~( X ) = P~. 

The following are, by now, standard consequences. 
(i) [7] O~,~ is traceless, and can be split into two fight-cone fields ¢9+(x+), O ( x _ )  

of light-cone dimensions d÷ = 2, d = 2, respectively. Both are Lie fields, and their 
moments 

L. = ¼(-a)" fdx(x  - i)l+n(x + i ) l - n O ( x ) ,  (2.2) 

satisfy two independent Virasoro algebras (one for either light-cone; we omitted the 
label + / -  ). In particular 

} f  ' L1) P =  d x O ( x ) = L o + 7 ( L _ l  + , 

D =  fxdxO(x) = i ( L , -  L,) ,  

K= ½ fx2dx  O(x) = Lo-  }(L_I + L1). (2.3) 

The "compact picture" with its "radial quantization" (analyticity in "radial tubes" 
in Wightman's spirit) is obtained from this by a complex M5bius transformation 
~(x) = (x - i ) / (1  - ix), which maps the real axis onto the unit circle. This transfor- 
mation is not a physical symmetry of the theory, but rather an isometric mapping 
from one theory into another. We make no use of the compact picture. 

(ii) [8] Since the Weyl inversion I: x ~ - 1 / x  is contained in the conformal 
group, K = U(I)PU(I) ÷ has the same nonnegative spectrum as P. In particular the 
generators L o = l ( p  + K)  ("conformal Hamiltonians", one for either fight-cone) of 
the compact subgroup U(1) of SL(2, ~ ) / Z  2 have nonnegative spectrum. 
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(iii) [9] The conformal fields (2.1) organize into families [a+a -] such that the 
orthogonal subspaces 9f'i~+,- 1 = span{~+~-(x)/alq,~+ ~ ~ [a+a-]}  are irreducible 
representation spaces of the Virasoro algebra Vir+ ® Vir_. For every representation, 
denoted also [a+a- ] ,  there is a primary field of dimensions h += h(a+),  h - =  h(a  ), 
while all other conformal fields belonging to [a+a -] (quasiprimary fields) have 
dimensions d -+ = h -+ + n +, n + ~ N. 

(iv) [5] The integration of the infinitesimal transformation behaviour (2.1) is in 
general impossible for a local field ¢~+~ as a whole. In fact there occur complex 
phases in the law for special conformal transformations Tbx = x / ( 1  - bx) beyond 
the singular point, that depend on the states between which q~+, is evaluated. 
Introducing orthogonal projectors P~+B onto vvt°t/~+/~- 1 it is found from the phases 
of the three-point functions (q,t~+/~-~2, q~,+~ 4'~+~ /a) - which are in turn determined 
by the spectrum condition - that 

+ = .) 

U +(X ) , o+o- (x  +_, . )U  +(a ) + = +, .) 

V+_(b)P,+,- ,o+o-(x  +_, .)P,+,- V+ (b) + 

where 

~ ±  

=o/i±v±(b,x+) "PB+~ ~,+~ (Tbx_+, ")P~+r- (2.4) 

o~v (b, x)  = (1 - b ( x  + ie))-a°+hY-h~(1 -- b ( x  - ie))-a°-h~+hB 

= l l - b x l - 2 d ,  e x p [ 2 ~ r i s i g ( b ) O ( b x - 1 ) ( h l 3 - h v ) ]  ; (2.5) 

0 is the step function, and h~_+, hv_+ the primary dimensions of the representations 
[fl+fl-],  [~,+~,-]. The dot in eq. (2.4) stands for the other light-cone variable. In 
particular @+ and U+ commute with the projectors P/~+~ . The center of the 
conformal group, generated by Z -+ = exp 2~riLf,  is represented nontrivially as 

Z + PI~+ I~ - = exp( 27rihl~± ) P13+ ~ 

Z+-PI3+B e#~+~ Pv+v-(Z+)+=exp[2~ri(h~+_-hv±)]Pl~+l~-q~+,-Pv+v , (2.6) 

thus the quantum symmetry group is the universal covering SL(2, R)+ ® S L(2, R)_ 
of the M/Sbius group. 

(v) [9] Decompose a local n-point function W =  (fa, O~,+~c "'" O~+~;fa) into a sum 
of non-local functions 

W~+~ = (~2, q~+~-P~;~{ P,+ , q,+ -~2] (2.7) 
" " " P n - - 1 / a n  1 ~ n  ~ n  ] ' 
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~+, 4-  referring to the "channel" of successive projectors. Then W~+~ ---F~+. F~ 
factorizes into "conformal blocks" F~+ depending on a+,fl +, x+ only, and F~ 
depending on a - ,  fl-,  x only. 

This justifies [4] the factorization of the projected fields as operators 

: vtB+ J ® VEB 1, 

+ - + ~ (2.8) 1 

We have thus obtained the field q,~÷~ as a bilinear combination of light-cone fields 
(a++)B+v+ and (a~--)O y . It is an immediate question what locality, i.e. space-like 
commutativity of 2-dimensional fields ~,+~ , means in terms of light-cone fields 
(a~)Bv. The latter cannot just commute with each other, formally since they carry 
their projectors with them, physically since then time-like commutativity were also 
implied. In sect. 3 we shall discuss as a most natural structure (see also ref. [6]) a 
bilinear "exchange algebra" satisfied by two collections of fight-cone fields. It will 
have space-like commutativity of local fields as a consequence, while realizing 
non-trivial dynamics at time-like distances. 

For  this purpose we have to make one further structural assumption about the 
CQFTh  2 aimed at. Let us state it as follows. The non-vanishing 3-point functions 
(4~B+ B ~2, ~+~ q~ + -~2) define a set of formal, associative and commutative, "fusion 
rules" 

[a+a ][y+y ]= ~ ~ [fi+fl ],  (2.9) 
W B- 

which specify the channels contributing to a local n-point function. Our assumption 
is 

(3) for every [ a+a - ] , [ 7+7  -] the sum in eq. (2.9) is finite. 
The assumption is satisfied, e.g. in the minimal models (c < 1) [9], the Thirring 

model (c = 1) [10], the Wess-Zumino-Wit ten (WZW) models (c > 1) [11], and in a 
number of further classified models, characterized by various additional symmetries 
(N  = 1, 2 supersymmetry [11], Zu-symmetry [12] . . . .  ). It seems, however, not to be a 
feature of general CQFTh2; instead, it is essentially this extremely untypical 
property of finiteness going along with a maximal domain of analyticity of the 
Wightman functions, which distinguishes the various classified "oases" scattered in 
the vast "desert" of c > 1 theories, generally inaccessible due to infinite fusion rules. 
Though, formally, the assumption (3) can easily be relaxed, the analytic properties 
are expected to change drastically. 

Note  that, in the above, [a+a -] are not necessarily inequivalent Virasoro repre- 
sentations. Different fields corresponding to the same representation are counted 
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separately in the fusion rules. There may be a larger symmetry (Kac-Moody- or 
supersymmetry) collecting families of [a +a-]  (with common primary dimensions 
m o d Z  in the Kac-Moody case, mod~Z in the supersymmetric case) into one 
irreducible representation of the enlarged symmetry. 

3. Exchange field theory 

The preceding discussion has provided the motivation for the following, model-in- 
dependent definition of a conformal "exchange field theory". Here the term 
"exchange" makes the distinction from local field theory. 

We have in mind a family of primary and quasiprimary conformal light-cone 
fields a s, belonging to irreducible representations [a] in Vt~ 1 of the Virasoro algebra, 
and a set of associative and commutative (formal) fusion rules 

finite 

[a ] [ '~ ]=  ~ [f l] .  (3.1) 

In particular, there are a vacuum sector Vo, a vacuum state 12 e V0, and a vacuum 
representation [0] such that [a][0] = [a]. 

For every ~,, and for every fl contributing to this sum, there is an intertwining 
light-cone field, depending on a one-dimensional variable x = x + 

(a,~)/~r(x) =- Paa,,(x)Pr: V~, --> V~. (3.2) 

If in agreement with these fusion rules an operator product Pt~oa,,l(Xl)Plz~ ...  
P~._la,~.(x,,)P/~. does not identically vanish, we shall call this product, and the 
corresponding multi-index (~ct) -- (/30, al,---,  an, fin), "admissible". All admissible 
operator products are assumed linearly independent operator-valued functions of 
their light-cone variables. Multiplication in the field algebra is associative. 

The fields (a~),v are supposed to behave under the respective groups of transla- 
tions, dilatations, and special conformal transformations, like the projected local 
fields (2.4) 

U ( a ) a ~ ( x ) U ( a ) - l = a ~ ( x + a ) ,  

U(X)ao(x)U(X)-I= oao(Xx), 

U( b )( a~,) #v( x )U(  b ) -1 = al~( b, x )( a,~) #v(TbX ) , (3.3) 

where the first two equations are irrespective of fl and 7. The notations are as in eq. 
(2.4). 
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In particular 

Z[ ve = e(h•), 

Z(a,~)~v(x)Z += e(h~ - hv)(a,~)Bv(x), (3.4) 

where we have introduced the notation 

e(h) = exp(2crih). 

There is a field J - ( x )  (which is just a rescaled version of O(x) such that 
(f2, J (x l ) .Y- (x2) f2)  = ½c(x 1 - x 2 - i e )  -4) generating the conformal transforma- 
tions like in eq. (2.3). The commutators of a ,  with higher moments Ln, [n[ > 1, eq. 
(2.2), take all fields belonging to [a] irreducibly into each other. 

The usual notion of "locality" is meaningless in a light-cone theory. It is replaced 
by the following. 

Exchange algebra. There are matrices [R}aB°aB}))(Xl, X2)]fllfl; f o r  x I 5/= X 2 such that 

PBoaal ( xl) eB~ao, z( x2) eB2 

= Z [R(fl°fl2)(X X 2 ) ]  th~fPt3oa=2(x2)P/3;a~l(xl)PB2 t (~tla2) \ 1' 
B; 

(3.5) 

In particular, for x I =# X 2 

PBao,( Xl) Py.-.Y-( x2) =,~(  x2) Pi3a,~( xl) P v , (3.6) 

and in case there is a Kac-Moody  current j (x )  

Paa~,( xt) P~j( x2) =j(  x2) Pca,, ( x ')  PY , 

where/3  project onto the irreducible representation spaces of the enlarged symme- 
try. 

Since all fields a~, a ~ [a], are obtained from the corresponding primary field by 
appropriate short-distance limits of products with J - (x ) ,  it follows that the matrices 
R depend on a i only through [ai]. In the Kac -Moody  case, if [ai] and [a;] belong 
to the same enlarged representation, the respective R matrices also coincide. 

Proposition 1. The matrices R(#lth):x x2) depend on the light-cone variables (a1,~2) \ D 
only through s12 = sig(x 1 - x 2 ) .  Calling 

R(B°Bz)gXl > x2) =: R (B°BD (3.7a) (ala2) k (ala2) , 



722 

one has 

K.-H. Rehren, B. Schroer / Einstein causality 

R(Zofi~)ix < x2 ) = [R(fiofl~)] - - 1  (~,~) ~ I t (~2~1) (3.75) 

Proposition 2. Define diagonal matrices 

1 h [,#Bo#2)] = 8fifi, e x p 2 ~ i ( h f i -  ~( Bo + hfi2)), (3.8) [ ' r ( a l a 2 )  ] fifi' 

which depend on a 1, a 2 through fl running over the values for which (floaxfla2fl2) 
are admissible. Then 

~(fi°fi2)R(~ofi~)a,(fiofi2)R(fio~) 1 (3.9) 
(a l~2)  ( eL1 Or2 ) ~'P( {~26tl) ( O12 ~tl ) ~ , 

In particular "on  the vacuum" (f12 = [0]), where the size of the matrices is 1 × 1 

R (fi0)(al~2) R (~0)(~t2~1) = exp 27ri ( h f i -  h ~ -  h ~ )  . (3.10) 

Proposition 3. The exchange matrices tR(fifi')l satisfy t ( aa ' )  l y y '  

t (al°t2) ] filfi2' [ (alCt3) ] fl2fi~ t (a2a3) ] fl{'fil fi{' 

= ~ [R (z'z~)] [R (fi°a~')] [R (a~a3)] (3.11) [ (a2~t3)] fi2fi2 t t (Otl~3) ] ]~lfi~ [ (Otla2) ] fl2'fi2 

for all admissible multi-indices (floOllfllOl2fl2Ol3fl3) and ( f i 0 a 3 f l { a 2 f l ~ O t l f l 3 ) .  

Before we prove these propositions, let us make some remarks. 
The operator algebra (3.5) translates into analytic properties of Wightman n-point 

functions of light-cone fields. The latter are defined by complex conformal transfor- 
mations as analytic functions in a large complex domain (the "conformal tube") of 
analyticity. There are cyclically ordered real points ("conformal Jost points") 
( X  v > X~,+l > " " • > Xz,_l, or x,  < x,+ 1 < • • • < X ~ _ l )  which lie inside this domain, 
while permuted real points lie on the boundary. The exchange algebra expresses 
n-point functions at permuted real points as linear combinations of n-point func- 

"-8"" 
tions at the original points. This again enlarges the domain of analyticity into C", 
where ° denotes the omission of all points of coincidence xg = x j, i 4:j, and ~ 
denotes the universal covering, since ( ~  is not simply connected. Actually, the 
theory makes use of a finite covering only. For these functions the matrices R 
describe the analytic exchange ~_~'-~,+~ with positive orientation of two neighboring 
variables, while R ( ~ 2 ) R ( ~ )  describe the monodromy x i - x i +  1 (with positive 
orientation) around a branch point [4]. Vice versa, it can be shown from first 
principles of CQFTh 2 that the exchange algebra is a consequence of the domain of 

analyticity of conformal blocks being C" [6]. 
The identity of proposition 3 has obviously the structure of a Yang-Baxter  

equation [14] for a vertex or SOS type lattice model [15]: read a as a generalized 
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"orientat ion" of a link, and /3 as the corresponding "heights" of the adjacent 
plaquettes. Solutions to the Yang-Baxter  equations are well known, and the 
dependence on a rapidity or spectral parameter must be eliminated by appropriate 
limits [4]. Possibly there exist more solutions of eq. (3.11). Given a solution of eq. 
(3.11), one must check whether diagonal phase matrices ~ exist satisfying eq. (3.10). 
If they do, most of the dimensional trajectories h(/3) of the corresponding model 
can be read off their entries. We shall give important examples in sect. 7. 

Proof of Proposition 1. The first statement follows from the transformation laws 
under U(a)  and U(?Q since, due to the latter, R ( x  1, x2) must be translation- and 
scale-invariant quantities. The second statement becomes evident by solving eq. 
(3.5) for the operator products appearing on the r.h.s. 

Proof of Proposition 2. The statement follows from the fact that transformations 
with U(b) may change the sign s12 = sig(x 1 - x 2 ) .  In fact: "Ix 1 - " I x  2 - - ( x  I - x 2 )  / 

(1 - bxl)(1 - bx2) implies TSI2 = sig(Yx I - Yx2) = s~2- sig(l - bxx)" sig(1 - bx~). 
First applying a special conformal transformation U(b) to eq. (3.5) yields an 

expression of P¢oa~(Tx~)P¢a,2(Yx2)P¢: in terms of P¢oa~:(Yx2)P~,a~,(Yx~)P¢; Re- 
expressing the latter via the exchange algebra in terms of P~oa~(Txl)P¢,,a~(Tx~)P¢~, 
comparing coefficients and taking care of all phase factors stemming from the 
conformal transformation, yields the equation 

8/~a,, = E e  [ s i g ( b ) ( - h ( f l o )  + h ( f l )  + h( f l ' )  - h ( f l2 ) ) (O(bx  I - -  1 )  - -  O ( b x  2 - -  1))] 
B' 

fR(aoa~)/~ ~1 fR(aoB~)tTs ~1 
× L (a~a2) k°121J BB'[ (a211) \ 211J fl,fl,,, 

which in the case sig(1 - bxl) = sig(1 - bx2) ~ Ts21 = -s12, e[-] = 1, is the identity 
eq. (3.7). In the case sig(1 - bXl) = -sig(1 - bx2) ~ Ys21 = s12 =: s, (O(bxl) - 
O(bx2) ) = sig(b)s12, it is rewritten as 

1 = [ ~,(~o1~2) ] "R(~oB2) [ s ~ [ a(~o~21 ] s R(#oB2) ( s'~ 
t 'e(alaz) l ~'(a~a2) t /[ 'e(a2a~) ] (1211) ~, / • 

In both cases, s = + 1 or s = - 1 ,  this is equivalent to eq. (3.10). 
Proof of Proposition 3. The statement expresses the associativity of the field 

algebra. It is sufficient to consider triple operator products Paoa~(xl) × 
PBxaa2(x2)PB2aa3(x3)PB3 a t  different points x i ¢= xj, i-~j. There are two ways to 
express these products in terms of P¢oa~(x3)P#;a~2(x2)PB~a~l(xa)P¢; corresponding 
to two inequivalent representations of the permutation (13) in terms of transposi- 
tions (12) and (23). This results in the conditions 

Blfl~" [ (ala3) k 1311 B2B~ B;'B; B;' 

[ (1213)1"S23)] BzB~' [ (a~a3) ~ 13 B~'B~ 
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for all admissible multiindices, and for all possible signs Sij = s ig (x i -  x j).  Using 
proposition 1 to express all matrices R } ~ ] ( + / - ) i n  terms of R}~] = R}~(+) ,  for 
every choice of signs the above equation can be rewritten, after appropriate matrix 
multiplication and relabelling of a~, as eq. (3.11). 

In order to avoid confusion we should indicate that we made some change of 
notation as compared with ref. [4]. First, we found it convenient to treat the two 
light-cones in like rather than opposite manner, and introduced x+ = u, x = - v .  
(Then the euclidean section is z+= - z * . )  Second, the constant R matrices now 
describe positive rather than clockwise-oriented continuation. Third, the concept of 
a "scheme" has been replaced by the "fusion rules". 

4. Local field theory 

Let us now discuss the construction of a two-dimensional local field theory out of 
two light-cone exchange field theories. As suggested by sect. 2, we consider fields of 
the form 

gh+'¢+;8 v ,a-+)P+v+(x+) ® ( a ~ ) 8  -r-( x ) (4.1) 

with numerical coefficients g!.), which may take values different from 0,1 since the 
light-cone fields a ÷, a -  are so far defined without normalization. The point 
x = (x °, x 1) is defined by x ±= x ° + x 1. 

Proposition 4. Let the structure-constants matrices R ÷, R -  referring to the 
exchange algebras of fields (a~+)p+v+, ( a ~ ) P  v respectively satisfy the require- 
ments of propositions 1-3, such that fields q~, given by eq. (4.1) transform like 
conformal fields in two dimensions (eq. (2.4)). Then, two fields ~ and q~: satisfy 
the axiom of local (anti-)commutativity (Einstein causality) 

(~a,(Xl)t~t2(X2) = Et~a2(X2)t~a,(X1) 

if ( x t - x 2 )  2 = ( x t - x 2 ) + ( x t - x 2 ) _ < O  (4.2) 

(e = + 1 or - 1 ) ,  if and only if 

~586v+;888-,sv 82 ;8 P~["-(,~+,~-) ]v+8 + y+ 

= ~Z-,~SB~B+;Bov-,sB B2 ;v-B2 P- 
-f 

(4.3) 

for all (flo, r ,  f12) ± such that ( f l la l f lOl2f l2)  +- are admissible. 
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Special cases 
(1) Let the theory be parity invariant in the strong sense that P(a+~)¢r(x)P = 

(a2)/~y(x) (in particular the range of the labels a,/3 and the fusion rules coincide on 
( ~ + a )  the two light-cones, e = 1, and R + -  R-) .  Let gh+r+;a r- = 8,+,- 8B+ a- ~r+v X, 

where X = 1, if (/3a7) + are admissible, and X = 0 else. Then P~(t,  x ) P  = cO(t, - x ) ,  
and eq. (4.3) reduces to 

[R (~°~2)1 [R (¢°B~)l + (4.4) (,~,a2) lB B += [ (,,2al) lB B ' 

i.e. the R matrices for [a2] ~ [al] are transpose to each other (which is consistent 
with propositions 2 and 3), and symmetric for [al] = [a2]. The special solutions in 
subsect. 7.4 have this property. 

(2) Let there be a 1:1 mapping i of {a +) onto ( a - ) ,  and a 1:1 mapping 
j of {/3 + } onto ( /3-},  compatible with the fusion rules, but not necessarily taking 

,, (a+a ) __ the right "vacuum label" into the left vacuum label". Let gh+r+;B r - 
8i(,~+),,-Sj(/~+)B 8j(y+)r X. Then eq. (4.3) reduces to 

R (J(ao)J(a2))l = eIR +(B°a2)] (4.5) (i(a2)i(al)) I j ( f l ) j ( f l ' )  [ (•la2) ] ~'/~" 

If R ÷ satisfy the requirements of propositions 1-3, then so do R -  defined through 
eq. (4.5). In particular, if the + and - exchange algebras coincide and the 
mappings i, j describe a symmetry of the fusion rules, then eq. (4.5) describes a 
symmetry of the R matrices. Conversely, R matrices with a symmetry of eq. (4.5) 
allow for the construction of "non-diagonal" local fields out of two coinciding 
exchange algebras. Examples will be given in subsect. 7.4 too. 

Proof of proposition 4. The claim is immediately proved if eq. (4.1) is inserted 
into the 1.h.s. of eq. (4.2), and the exchange algebra relations are applied. At 
space-like distances, the R ÷ matrices and the R -  matrices occur with opposite 
exponents. 

It is also evident that at time-like distances the R + and R -  matrices occur with 
the same exponent. Expressing R -  via eq. (4.3) by R ÷, we see that essentially the 
squares of R ÷, i.e. the monodromy matrices, describe the non-commutative be- 
haviour at time-like distances. The examples show that the condition (4.3) can easily 
be satisfied if only the + exchange algebra is given, and that solutions less trivial 
than in case (1), which are of particular interest in the context of D-E type 
modular-invariant partition functions of minimal models, may be detected. 

At this point, locality has been traded by virtue of proposition 4 for a set of 
simple numerical equations. We emphasize, however, that local CQFTh 2 has not 
become a trivial issue, since along with the exchange algebra came the conditions of 
proposition 1-3. Their restrictive and predictive power should not be underesti- 
mated. The rest of this paper will address these topics. 
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5. Representations of braid groups 

The  structure constants R of an exchange algebra define matrix representations 
of  the braid groups B. [16], which are the fundamental  groups of C " / S . .  The  braid 
group B. (see below) is generated by elements a~, i = 1 . . . .  , n -  1, (and their 
inverses), satisfying 

OiO j =  tljO i if I i - j l  >--- 2, 

OiOi+ lOi ~ Oi+ lOiffi+ 1 • (5.1) 

There  is a natural  homomorphism it: B, ~ S,, o~ --* % T~ the transposit ion (i, i + 1), 
of the braid group into the symmetric group. 

The  representat ion matrices p~ = p(ai) induced from an exchange algebra describe 
the t ransposi t ion of two neighboring operators a, , (x i ) ,  a,,+a(x~+l) within an admis- 
sible n-point  operator  product  

( x O  . . .  ao.( x . )  . 

These  keep flo, ft, fixed, while a i (i = 1 . . . . .  n) are permuted and fli (i = 1 . . . . .  n - 1) 
are changed according to the fusion rules. Hence, the matrix indices of the 
representat ion matrices run over all admissible (13et)= (floax.. .  a,  fl,) with /30, ft, 
fixed, and ( a  z . . . . .  a , )  permutat ions of a fixed n-tuple A = (a  ° . . . .  , a°). 

The  following proposi t ion is a concise reformulat ion of proposit ions 2 and 3. 
Proposition 5. Given an exchange algebra satisfying the requirements of proposi- 

tions 1-3 .  Choose  A = (a  ° . . . . .  a °) and ]30, ft,- 
( l )  Then  the matrices 

~ . . .  8 rR(~,~l~,+,)l (5.2) [Pi] (~) (~ '~ t ' ) l=a~ ' ic t ,~ t '~ f l l [J[ ' "~ i f l ;  ~n aB" 1t ( . . . .  ) ]fl,  f l [ '  

define a representat ion p<A'P0'P.)(o~) := p~ of B, ( ~  denotes omission of a term). 
(2) Let  

1 h [%](ff~),(a,~,):=8~,~,Sa, a,e(ha-i( Bi_l-l-hfli+l)). (5.3) 

Then  we have 

epipiepipi = 1. (5.4) 

Example.  Consider  three fields a~l, a,2, a~3, and choose/30 arbitrary, [/~3] = [0] .  

Deno te  h (a i )  = h i, h(flo) = h o. 
For  a given permutat ion ( / jk)  of (123) referring to an operator  product  

P~oa,~a~sa~kP~3 the intermediate projector on [fiE] = [ag] is fixed while only fll =" fl 
is a free label (ranging over values specified by the fusion rule [%][ak] = ~[f l ] ) .  
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Thus, denote the matrix indices of Pi by (/j'k;/3). Then 

727 

[ P2](ijk;fl)(ikj;fl') = R(O0) ~ (ajak) 'Bl~" ' 

[ Pl](ijk;fl)(jik;fl ') -~ [ ' ' (aia,)  I f ie" 
(5.5) 

[¢Pll(ijk;O)(Uk;O) = e( h ( f l )  - 1(ho + hk)) ,  

[~P2](ifl,;O)(ijk;O) = e( hk - l h ( f l )  ) ,  (5.6) 

while all other matrix elements vanish. Now, from (~2P2~2P2 = 1 we deduce 

2 _ e ( h ( f l ) - h k - h j ) 8 a o ,  [P2](ijk;f l)(i jk;f l ' )--  l~(flO) 0('80) R = ~" (%ak V" (ak%)W30' 

= e ( l h  0 -- h j  - l h i ) *  [~l](ijk;fl)(ijk;t~')" 

Inserting ~1 into ~lPlq01tOl = 1 yields 

1 2 
888, = E e ( -  lho + hg + 5h k)[ P2](ijk;B)(ijk;o)[Pll(ijk;B)(jik;B") 

fl" 

1 h 2 × e ( - ½ h  o + h i + ~ k)[P2](jik;fl")(jik;tS")[Pl](jik;fl")(jik;fl ')  

= e ( - h  o + h i + hj  + hk) [p~p~p~pll S0', (5.7) 

and hence, using the braid relations, 

-- = e ( +  ho - h , -  h i -  h )l. (5.8) 

That  this is a multiple of unity is no surprise, since (O'10"2) 3 generates the center of 

B 3. Its precise value, however, is computed from eq. (5.8). 
Now consider a field a a with nonvanishing four-point functions, and the repre- 

sentation of B 4 belonging to Poaaa~,aaaaPo. The matrices 02 and P3 are precisely 
what Px and P2 were in the above, with a trivial permutation index and h 0 = h i = 
hj = h k = ha. In particular (03P2P3)  2 =  e ( - 2 h , ) l .  In this case we have, moreover, 
Pl = P3, so that (plp2p3) 2= e ( - 2 h a ) l .  This is more than could be expected since 

the center of B 4 is generated by (alo2o3) 4. 
The example has shown that the phase conditions (3.9) may imply additional 

relations among the representation matrices Pi of the braid group alone, thus 
effectively representing some quotient B,/Ideal.  We believe that this is true in the 
general case, the resulting equations being comparable to Vafa's [17]. Less ambi- 
tiously, one may do without understanding of the group-theoretical significance, 
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and just take the determinants of eq. (5.4). Since: 
(i) in every representation of 13, all Oi, i = 1 . . . .  , n - 1, have a common spectrum; 

and 
(ii) for [fin] = [0] the matrix p2_1 is a diagonal matrix with entries (3.10) given in 

terms of conformal dimensions, and multiplicities determined by the fusion rules, 
one immediately gets a system of linear equations 

Y~c/jhfl = 0mod Z(c~ ~ N) ,  (5.9) 

for the dimensional trajectory h a = h([fl]) which can be written down and solved 
without any knowledge about the precise form of the off-vacuum R matrices. 

The advantage of the reformulation of exchange algebras in terms of braid-group 
representations as introduced in proposition 5 is that important field-theoretic 
manipulations are translated into mathematical standard manipulations with group 
representations. 

Recall proposition 4, for example. The requirement (4.3) describes some projec- 
tion of the representation p + ® p-1 of B n onto a one-dimensional subrepresentation 
(the trivial (e = 1) or the anti-symmetric (e = -1)) ;  here p -1 is the representation 
defined by 0-1(o,.)= (p(ai)) -1. The failure of time-like (anti-)commutativity is 
reflected by the fact that the same projection cannot be expected to define a 
subrepresentation of O + ® P- at the same time. 

So far, the precise forms of the representation matrices p (proposition 5) and the 
projection coefficients (proposition 4) refer explicitly to the sectors V~ of conformal 
QFTh. One may drop this reminiscence and imagine a generalization of the above 
possibly leading beyond CQFTh 2. Define an exchange algebra by a collection of 
braid-group representations acting on light-cone n-point functions. An analogue of 
eq. (5.4) is not required. Two-dimensional fields are then defined as one-dimen- 
sional subrepresentations to of p+® p l  1, where exotic statistics (i.e. p(o 2) = E 2 4 = 1) 
may be admitted. This generalization would preserve the issue of explicit non-trivial 
time-like commutation behaviour of QFTh 2. 

Let us, however, return to our original concept of eonformal light-cone fields, and 
discuss further field-theoretic manipulations in the light of braid-group representa- 
tions. 

First there is the evident observation that the R matrices relevant for the tensor 
products of independent fields are just the tensor products of the R matrices of the 
respective factor fields, while the induced representations of the braid groups are 
just the tensor products of the representations induced by the factors. It is likely 
evident that multiplying R matrices by an overall (phase) factor X preserves the 
representation conditions. Combining these two harmless operations, however, has 
nontrivial field-theoretic consequences. Referring to subsect. 7.3 for the discussion 
of this phenomenon, we want to just mention here that the factor X influences the 
dimensional trajectories according to proposition 2. In particular the dimension of 
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the "produc t  field" will no longer equal the sum of the dimensions of the factor 
fields, as it should for an ordinary tensor product. 

Second, there is a natural construction of new representations out of old, which 
exists only for braid groups. The idea is to combine several " threads" of the braid 
into one "s t rand",  which (as we shall see in sect. 6) corresponds to the field-theo- 
retic operation of short-distance operator products. For an explanation it is helpful 
to recall the pictorial description of the braid group (which actually stood at the 
historical origin of studying braids as topological objects in R 3 [16]). 

An n-braid b is described by a set of n non-intersecting curves cj: [0,1] ~ R 3, 
monotonous in the 2-component, with cj(O) = ( j ,0 ,0) ,  cj(1) = (Trb(j),l,0), ~), E Sn, 
j = 1 . . . . .  n. Two such sets of curves describe the same braid, if they can be 
continuously deformed into each other without intersections. The natural descrip- 
tion of the identity braid e is {c j ( t )=  ( j ,  t,0)}, % =  e ~ S,. Typically 

1 n 1 2  3---n 

(s.10) 

The composition law for b 2 o b x is given by functions 

c[bl] j (2t ) ,  t<_ 1, 

5[b2°b l] j ( t ) :=  c[b2]~b,( j)(2t-1)+e2,  t>_½ 

(hence ~[b 2 o bl]j(1 ) = ((%2 ° %,)(J) '  2, 0)), the 2-components of which are rescaled 
by ½ in order to obtain c[b 2 o bx]j(t ). Graphically this is just "linking b 2 on top 
of bl" 

(5.11) 

The projection ~r: b ~ % is a group homomorphism of B, in S,. 
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The generating braids o r (respectively 071) are described by functions with a 
single intersection of t h e / t h  with the (i + 1)th curve projected into the 1-2 plane, 
say at " t ime" t o, such that (e 3 • ci(to) ) > [respectively < (e 3 • c~+l(t0))]. Thus %, = 
~'i = transposition of (i, i + 1) 

/ ' / o] . . . . . . .  o] . . . . . . .  (5.12) 

I 1.1 I 1.1 

Every continuous deformation can be performed as a series of "Reidemeister 
moves", i.e. the following braid identities hold 

U 
Rl:oio71 = e = o71oi: • • . ~  . . . . . . .  

= o H i ,  I i - j l  > 2:  • . ~ . . - ~ . .  R2: oio j 

. . . . . . .  

The center of B n is generated by (o l . . .  %_1) n 

(5.13) 

{Ul""~'n_l/n = ~ .  (5.14) 

The following propositions describe "strand products" of (representations of) B,. 
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There  is a natural  embedding  I of B~ in B,, n = p .  v, which maps  

(pi, i-1) " H 0 E H o °t ol ((p,,O))((p/~I,1) "''( H O).. ((pi,l,)((p/l~I,0) Bn (5.15) 

where  

b 
n b+2k 

are c o m m u t a t i v e  products .  Graphical ly  

1(~i) . . . .  

P P 

• ° ° 

Proposition 7. Given a representat ion O of B n in V. Let  v < n. Consider  the set A 
of  inequivalent  part i t ions (?~) = (~1 . . . . .  k , ) ,  ki ~ N, of  n = ET=1~i, which are just  
pe rmu ta t i ons  of  some part i t ion (k0) of  n. In t roduce an or thonormal  basis { e(x)} of  

R N, where  N = I A I- 
Let  ~-~(~) -- (?h --- ?'~+1~'i .-. 2~,), 1 < i < v - 1. The following defines a represen- 

ta t ion t~ of  B~ in V ® R N, depending on O and A. 
Fo r  a pa i r  [ i , (~)]  let # = ~j_<~?~j, # '  = E j<~k j  + ~i+1, ~ = min(?~i, ?~i+a) - 1. Set 

(5.16) 

where  the dots  interpolate in unit  steps f rom 0 to 2~, f r om/~ '  to #, and f rom h to 0, 
respectively• Graphica l ly  

! 

A I Aj t .h,i. I -~v 
# 

T h e n  ~3 is given by  

~(8 i )  := Z p [ i , ( Y k ) ]  ® e~,(x)e(T). (5.17) 
(X) 



732 K.-H. Rehren, B. Schroer / Einstein causality 

In the case n = p -  v, (?~) = (p  . . . . .  p), N = 1, the representation constructed in 
proposition 7 is nothing but the representation induced by the embedding of 
proposition 6. 

Proof of propositions 6 and 7. All one has to show is that the objects I(8i), 
respectively ~(8~), commute for [i - j [  > 2 and satisfy the defining braid relation R 3 

OiOi+ lO i ~ Oi+ lOiOi+ 1 • 

These statements, however, are graphically evident from the following pictures of 
identities in B, 

. .  I / .  (5.18) 

6. Operator products in exchange field theory 

An operator product 

P/~o( a,~,(Yl)Pf, "'" Pf, Ia<,,,(Y,'))PB,( a . . . .  (YP+ 1)Pfl.+,---P~°_a,~,( y,,))Pf,,, 

can be expressed in terms of 

Pf lo (aa ,+1(yv+l )P f l~ . . .P f l~ ,  , a,~,(y,,))PB;_.(a+1(yl)Pfl; ' .+ ...PB; ao,.(y,,))P~+, 

by means of a product of v(n - v) matrices p~ ~t la proposition 5. If Yl . . . . .  y, are all 
sufficiently close to xl, and Y,+I . . . . .  y, are all sufficiently close to x 2 ~ x 1, then 
these matrices appear all with the common sign s~2 = sig(x 1 - x 2 ) .  The matrix 
products so obtained are the R matrices for short-distance operator products of the 
type Pao(a~,(yt)Pf, . . .  Pa~_a~(y,))Pa~ with each other, and they automatically 
satisfy the appropriate braid relations (=-associativity conditions). This is the 
field-theoretic analog of the "strand formation" and proposition 7. However, 
the resulting algebra is not a new exchange algebra in the precise sense of sect. 3: 
the operator products to be exchanged cannot readily be assigned to a particular 
(composite) field A~, sandwiched among sector projectors. Instead, one must find 
linear combinations 

PfoA~([x])Pf .  = E ~(fo; . . . . . . .  ;f.)p [~, f ,  ~p Pf ._a~ . (y , ) )P f .  (6.1) v a ; f l . . . f ~ - i  f lo \ "a ,  \ f l !  i l l " ' "  
f i x  fl,- , 
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such that the new R matrices restricted to these combinations describe an algebra 

e~oA ol ( [ xl  ] ) e~lA ,2 ( [ x2 l ) e~2 

= Y'~[Ri~o~(s12)]Ih13rPBoA,z([x2])PB(A,~([xll)PB2. (6.2) 
11; 

Here, for the moment [x] stands formally for the set (Yl--- Y,) of arguments close 
t o  x .  

It is well known [18] that operator products on the vacuum (i.e. [/3~] = [0]), after 
multiplication with appropriate scaling functions f~(y ,  3y), possess well defined 
short-distance limits. These behave precisely like light-cone field states P~a,(x)g2 
under conformal transformations. The missing point in the early studies was that 
there was no way to define short-distance limits off vacuum. 

Now, this gap is filled by the Exchange algebra. Its virtue is that it relates v- 
point operator products Paoa, , (y l ) . . .  a,,(y~)Pa, applied to /~-point states 
P o a ~ , + l ( Y ~ + l ) . . . a  . . . .  (y~+,)~2 linearly to states PBo a . . . .  ( Y ~ + I ) ' ' "  

a . . . .  (y~+~)P/~;a,x(yx)... a~,(y,)~2, i.e. the analytic behaviour of v-point operator 
products can be inferred from the analytic behaviour of v-point states, and short- 
distance limits that exist on-vacuum exist with the same scaling functions off-vacuum 
as well. 

Note that in the short-distance operator products P~oA,,([x])P~ (eq. (6.1)) the 
label a refers to [a]. The individual quasiprimary field a,~(x), a ~ [a], is only 
selected by the choice of the appropriate scaling function f , ,(y,  ay). For 1, = 2, 
f,~(YI, Y2, Oy~, 3y:) are given by [18] 

- 1  . .  - , ( 6 . 3 )  N Q h . + d . _ d . 2 , h _ d . x + d . 2 ( O y l ,  O y z ) ( y  I - - Y 2  ie) a"~+%-h° 

k z _ 1-,,  1 - ~ t ~  - 0 ~ tZ" '+k- lZ~+k 1~ d,~ = h~+ n,,, and where Q,~,~( 1' Z21 --  Z1 Z2 ~, ~z 1 z 21 \ 1 2 1' 

N -  ~ is a normalization constant. 
The problem in practice is the determination of the coefficients G (~°; -1 ..... ;t~.) a;B1. . .B~I  ' 

respectively the inverse expansion 

finite 

Pt~oa~l(Yt)Plh--. PI~,_la~,(Y~)PIL = E G(~"'~)PI~oA~([x])P/3~. (6.4) 
Ot 

At least for v = 2 these can be computed intrinsically, i.e. in terms of braid 
representation matrices (and scaling dimensions). This may illuminate the power of 
proposition 5. Consider the representation p = p(A=(~l"~"~);¢°'0)of B 3 introduced in 
the example following proposition 5. Then 

(P#oa,~(Yl)P&a,~j(Y2)P,~)a~,k(x2) ~2 

= E[O~'~O~'~l(,j~;/h)(k,j;a;)Paoa~(x2)(P/3(a~,(yl)P,a,~(ya))12. (6.5t 
B; 
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The operator products in brackets on the r.h.s, can be identified with PI~;A/3; ([xt])P o. 
The required coefficient matrix must "diagonalize" both (0201) and (pzaO[ 1) 
simultaneously. From the example (eq. (5.8)) we know that (PlP2Pl)P2Pl = e ( H ) P f  1, 
and ( 0 2 0 1 0 2 ) 0 2 1 0 1 1  = 02, where H = h o - h i - hj - h k. Thus comparing 

( ~B e( - ½ H )[ pzplp2](k ji; .)(ij*; #)P~oa ., (Yl)PBa.j ( Y2) P,,k ) a .,( x2) Q 

[i ~ -11 "~ = [e~gH,p  2 j<lqi;,~)<kij;.)PBoa`',(x2)P.A.([Xl]) ~ ,  

which follows from eq. (6.5), with the expected equation 

(/)BOA.([ xt] ) P., )a .k(x2)~ = R ~  o°) (xl ,  x2) Pfloa,,,(x2) P .A. ([  x2] ) ~,  

one obtains 

G(~o;~,~/~) e(_±t4~o(~o) [R(~o~j)] R(~O) 
"B = 2 " " / " ( ~ / ~ 0  L ( ~ k ~ ) l  ~B ("k` ' j)  ' 

R(flo O) = t~( ! ~ ~ I~(aO)- i 
(aa,) ~ ,  2 " "  ] * ' ( a s % )  ' 

R(~0o) = e(½H) p(,0)- 1 (6.6) ( - , - )  " ' ( % - i )  ' 

reproducing eq. (3.10). Note that both the braid relations (proposition 3) and the 
phase relations (proposition 2) have entered the argument essentially. Here we have 
computed the coefficients of an operator product P#oa, PBa,jP`'k from the required 
algebra with the field P,,a,,P o. The same operator product must satisfy an ex- 
change algebra with all fields P~a,,P~ simultaneously. This requirement needs 
further investigation. 

As an example consider a theory of hermitian fields (P#a~P~) += P~a,P#. Fix 
normalizations by the following equations 

( $2, a . (x , )a ,~,(x2)  e )  = sig( a ) e ( -  ½d.)~..,( x 1 - -  X 2 - -  ie)- 2a., 

( 12, a., (Xl) a.2 (x2) a.3 ( x3)~2 ) = c .... ,,3I- [ (x i -- xj - ie)-d,-aj +a,, 
i <j  

e(¼Ed,)%.=.eR 
% ° , . ~  = % . , ` ' ,  = ( - ) z ( ' ~ , - h , ) e . x . , ~ ,  

R(", = e ( ½ ( h x -  ("2"3) 

Unitary theories are characterized by all signs sig(a) of all quasiprimary fields being 
+ 1 [191. 
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Four-point functions have the well-known vacuum short-distance expansions 

( ~, a,~, ( xl)a,2( xz) P#a,~,( x3)aa,( x4)$2 ) 

X --  X 4 ) dl - d  2 ( Xl --  X 3 

X 1 - -  X 4 X 1 - -  X 4 

/ ( X  1 --  x 2 ) d l + d 2 ( x 3 - -  X 4 -  iE) "3+"4 

X E e(ld#)(c.,~djsig(fl)Clj~,,~4) 
#~[#l 

x x d P  2 F I (  N2 --  d 1 + a f t ,  d 3 - d 4 q- dfl;  2 d a ;  x ) ,  (6.7) 

which converge for xl > x2 > x3 = x4; x = ( X  1 - -  X 2 ) ( X  3 - -  X 4 - -  i e ) / ( x  I - -  x3) X 
(X 2 - -  X4)  = 0. 

The exchange algebra and eq. (6.6) imply the following off-vacuum short-distance 
expansions of the same functions 

E C(;1; a2a3; a')( 0 ,  aa,(xl)aa2(x2)Psaa3(x3)aa4(x4)~ ) 
,e 

. . . . .  (X  1 --  x 4 ) d l + d 4 ( x 2  --  X3 --  iE) d2+d3 
X I --  X 2 \ X l  --  X 2 ] 

× E e(½d,~)(c,~,~,,,sig(a)c,,,,2,,3) 
~E[,q 

X (1 - x ) d " 2 F l ( d  4 - d ,  -4- de, , d 3 - d 2 + d a ;  2 d ~ ;  1 - x ) ,  (6.8) 

w h i c h  c o n v e r g e  f o r  x 1 > x 2 ~ x 3 > x4 ;  ] - x = ( x  1 - x 4 ) ( x  2 - x 3 - ie)/(x 1 - x 3 )  X 

(X 2 - -  X4) = 0.  

It is crucial that the above expansions do not have the correct analytic properties 
term by term. Instead, the exchange algebra can only be satisfied by a most delicate 
interplay of the expansion coefficients, i.e. the quasiprimary three-point amplitudes 
and the signs sig(a) signalling violation of unitarity of the field theory [19]. The 
evaluation of this interplay would constitute the final completion of the "conformal 
bootstrap program". 

It is only fair to mention that ideas very similar to the "reduction" of strand- 
product representations - but in a different physical context - have been discussed 
earlier. Let us quote Karowski's approach to "boundstate S-matrices" (elaborated 
further by Kulish [20]), and the "fusion" of Yang-Baxter matrices of RSOS models 
[21]. The relevance of strand products was also observed by Frrhlich [6]. 
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7. Examples 

In this section we discuss a class of solutions to the conditions of propositions 
1-3,  which turn out to be the exchange algebras of the minimal models [9] and 
SU(2) WZW-models [11]. We develop the techniques discussed in general in the 
preceding sections in this specific context. In doing this, the power of our concepts 
will become apparent, both concerning the classification problem, and the qualita- 
tive and quantitative construction of conformal block functions. A counterexample 
will also be given, where a solution to the braid relations is incompatible with the 
conformal transformation behaviour, thus showing the relevance of both types of 
conditions. 

7.1. THE SOLUTION 

We give the exchange algebra for a single "elementary" field a~ = a which 
interpolates according to the fusion rules 

[ a ] [ l ]  = [ l -  1] • [ l +  1], (7.1) 

where l takes integer values 1,2 . . . .  , q - 1. [ / -  1] = [0] and [l + 1] = [q] are omitted 
from eq. (7.1). The sector [l] = [1] may (not necessarily) be identified with the 
vacuum sector; in that case [a] = [a][vacuum] = [2]. 

We found all solutions to eq. (3.11) compatible with the fusion rules (7.1) [4] 

[Rm)122  = [R(q-l ,q-1)lq_2,q_ 2 = : r / ,  

[ R ( I -  I,I+ I) ]I I =  [ R(l+ l , l -1)  ]l 1=: .0~ , 

with 

[ R(II) ]ITI ,IT1 = l~( - - td)  1/2 

X 
- ( - , o ) ' / % ( 1 ) / s ( t )  

xd , ( t -  1)4l + a)/s2(Z) 

X[~s( l  - 1)s(l+ 1)/s2(l) I 

(-~)-'/%(1)/~(0 I ' 

(7.2) 

(-~o)  = exp(2~rip/q), ( p  and q coprime), 

s( l ) := sin( hrF/q  ) . (7.3) 

The off-diagonal square roots in R (a) are taken with the same sign, and ( -  ~)1/2  := 

exp(2~ip/2q) .  Aiming at a parity-symmetric solution as in the special case (1) of 
proposition 4, we assume X t = 1. Then R (tt) are symmetric matrices, which are also 
unitary iff p = + 1 mod q, and ,/ a phase. In fact, in a unitary theory all conformal 
blocks contributing to a local n-point function a r e -  up to a common complex 
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p h a s e -  real funct ions at the " Jos t  points" ,  such that  the inversely oriented ex- 
change  is descr ibed by the complex  conjugate  matr ix;  hence we should require 
R* = R -1, and  R is symmetr ic  ¢~ R is unitary.  Note,  however,  that  uni tar i ty of  the 
field theory is a much  deeper  issue than just  unitari ty of  the R matrices! 

The  solut ions (7.2) possess the manifest  symmet ry  l ~ q - l 

[ R(q-lo,q-12) ]q_l,q_l, = [ R(lol2) ]ll," (7.4) 

T h e  matr ices  (7.2) have been constructed as solutions to the braid  relations of  
p ropos i t ion  3. They  must  also solve the phase relations of proposi t ion 2. This yields 
the cons t ra in t  

, /4= ( _  60)-3, (7.5) 

as well as the following equations for the dimensional  trajectories h z = h([l]) 

e(2hl+ 1 _ 2hi)  = ~/2(_ 60)t+2, 

e (h,+ 1 - 2h, + h,_a) = 7~2( --  60 )2 .  (7.6) 

W e  m a y  absorb  the sign of the square r o o t  172= - I - ( - 6 0 )  - 3 / 2  in the f reedom 
p ~ p  + q which leaves R unchanged,  and a s s u m e  17 2 = ( - t o )  3/2. Still, we find two 
dif ferent  trajectories according to e(h 2 - hi)  = _ ( - 60) 3/4 

( 1 2 _ 1 ) p _ 4 e ( l _ 1 ) q )  
e ( h t ) = e  h 1+ 4q ' (7.7) 

1 where  e = 0, or e = g. 
They  are easily identified with the Kac  spectrum [9] h t = h x . t ( c ( p , q ) ) [ h  1 = O, 

e = ½; c (p ,  q) = 1 - 6 ( p  - q)2/pq] 

(12_  1 ) p -  2 ( l -  1)q  
hl 'z = 4q ' (7.8) 

with the K a c  spec t rum h t = hk . l (c (p ,  q))[h 1 4: 0, e = ½k m o d l ]  

(lp - kq)  2 - ( p  - q)2 
(7.9) h k, t = 4pq 

or with the SU(2) W Z W  spect rum [ h  I = 0, e = 0 ;  / ~ 2 j  + 1, q = k + 2, p = 1] 

j ( j  + 1) 
h i =  k +  2 (7.10) 
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Observe that both the unitary minimal models [22] with IP - ql = 1, and the WZW 
models with p = 1 indeed have unitary exchange matrices. 

For  the minimal trajectories, the fusion rules (7.1) are those of the field ~(1,2). 
along a horizontal row of the "BPZ rectangle" [9]. The usual identification of Vk, t 
with Vp_k,q_ l is consistent with the symmetry (7.4). After a relabelling of l, the 
fusion rules (7.1) are also those of the field OO, q-2)- along a row of the BPZ 
rectangle (see subsect. 7.4). We shall discuss in subsect. 7.2 how, by strand 
formation (see above), the "horizontal" light-cone fields a t associated with q~(1,l). 
can be included in the exchange algebra, and in subsect. 7.3 how the minimal 
models can be completed by the introduction of a "vertical" elementary field b 
associated with 0])(2,1).. 

For the WZW trajectory, the fusion rules (7.1) are those of the doublet field q~2. 
with the isospin-(j  = ( l -  1)/2) multiplet fields q~/. which are primary with respect 
to the enlarged symmetry algebra. With respect to the Virasoro algebra, every 
isospin component  q~j,,. ( l = 1 , 2  . . . . .  k +  1; j = ( l -  1 ) / 2 + 0 , 1  . . . .  ; m =  
- j  . . . . .  + j )  is primary with the fusion rules 

[ 2 , ½ , / ~ ] [ l , j , m ] =  ~ (t~ [ l ' , j ' , m + / * ]  (7.11) 
t '=t+l j,=j+_l 

while their exchange algebra is given by R matrices (7.2) with the relevant l labels, 
but irrespective of j and m. The reader may convince himself that, e.g., the use of 
the same R matrix element in 

PI', j,01a(2, I, + ~)(xl) a(2, ~,- ~)(x2) ~ = [ R ( l ' x ) 1 2 2 P [  x, J,o]a( 2, ½,- ½) ( x 2 )  a(  2, ~, + ½) ( x l )  ~-~ 

for both the singlet ( j  = 0) and the triplet ( j  = 1) Virasoro sectors within the 
vacuum (l = 1) Kac-Moody  sector is in perfect agreement with the relative sign 
expected from isospin (anti-)symmetrization as well as from the analytic behaviour 
of the 3-point functions with h ([1, 0, 0]) = 0 and h([1,1,0])= 1. 

7.2. S T R A N D  F O R M A T I O N  

Let us concentrate on the minimal model interpretation of eq. (7.7). Assume 
[1] = [vacuum], thus [a] = [2]. We have given in eq. (7.2) only the exchange algebra 
of the elementary field a = a 2, associated with ~(1,2).- The operator product of this 
field with itself is known to produce fields 4~(1,n+1).- Our idea is to construct the 
corresponding light-cone fields (a n + x)a' as short-distance limits of n fields a 2 

Ploan+l(X)PI,  = l i m f ( x ,  O~) ~ c,1...,._lPtoa(xx)Ph... Pt._fl(x.)Pt. (7.12) 
11...[n-1 

Actually we do not need to calculate, but rather can take over Jimbo's et al. 
calculations [21]. The reason is that up to similarity transformations and some 
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overall factor, our matrices fR (tot2)1 coincide with the RSOS model Boltzmann t (22) J It" 

weights [15] 

Wll ( l, lo, l',121u ) , 

1 in the limit u ~ - i oo  at K =  i~r, 27/= ~rp/q. The "fusion" of ref. [21] is equivalent 
to the projection onto the leading irreducible representation in the braid-group 
representation induced by strand formation ~t la sect. 5, or the construction of a n + i 
as a linear combination of operator products with n fields a 2 h la sect. 6. 

We quote the result 

n - 1  

ct .... ', 1 -  I-I itJs(lj) 1/2, (7.13) 
j = l  

which can be made real by multiplication with some common power of i. The 
corresponding exchange matrices R ( n + l , n , + l  ) of the composite fields an+ 1 can be 
computed as the appropriate u- - - , - ioo  limits of the (symmetrized) weights 
Wn,,(l, lo, l', 121u ) of ref. [21]. 

The higher fusion rules [9] 

m i n ( n l  + n 2 1 , 2 q - n ~ - n 2 - - 1  ) 

[nt][n2] = ~ )  [n ] ,  (7.14) 
n ~ [ n  1 n 2 [ + l  

where the sum leaves out every second term, can be recovered by combinatorial 
arguments. 

7.3. THE EXCHANGE ALGEBRA OF THE COMPLETE MINIMAL MODELS 

We have, so far, constructed the algebra of the field a associated with 0(1,2). in 
the BPZ rectangle [9], and (in principle) that of the fields a n associated with q~(1,,). 
as well. The "structure constants" R of this algebra of fields interpolating among 
the sectors Vk, z with k fixed (i.e. interpolating within the horizontal rows of the 
rectangle) are independent of k. Actually k came into eq. (7.9) by hand, choosing 
hl = hk, 1. In this sense we may speak of (a priori inequivalent) representations, 
labelled by k, of the same "horizontal" field algebra ~ .  

In the minimal models there is a "vertical" field b associated with ff(2,1), outside 
the horizontal field algebra, interpolating among different k representations of d .  
The field b in turn is the germ of a "vertical" field algebra ~ acting within the lth 
columns of the BPZ rectangle, while the horizontal field a interpolates among 
different l representations of ~ .  One may speak of a and b as "mutual  soliton 
fields" intertwining between different "charged" representations of the field algebra 
of each other. 

For  the field algebra of the complete minimal models we only lack the exchange 
relations of a with b, which are clearly constrained by propositions 2 and 3. 
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Consider two fields a and b, both of the type described in subsect. 7.1, which we 
want to identify in the end with the light-cone fields associated with q~(1,2), and 
~(2,x). of the BPZ minimal models. We thus assume the fusion rules of b not to 
"interfere" with those of a. In other words, there are sectors Vk, t, 1 < k < q ' ,  
1 < l < q, and the fusion rules 

[ a ] [ k ,  l] = [k, l +  1] @ [k, l -  1], 

[ b l [k ,  11 = [k + 1, l] @ [k - 1, Z]. (7.15) 

Introducing projectors Pk, t onto Vk, t, and Pk.= EIP,, t, P.t = Y"I, Pk, t, we have aPk.= 
Pk.a and bP.t= P.lb, while Pk, t+_laPkl satisfy an exchange algebra with structure 
constants (7.2) independent of k, and Pk +_l, lbPkl satisfy an analogous exchange 
algebra independent of l. The former is parametrized by phases -co = e ( p / q ) ,  ~7, 
the latter by phases -co'  = e ( p ' / q ' ) ,  77'. 

Now the exchange algebra of a with b is of the form 

P k + l , + , a ( x x ) P k + l t b ( x 2 ) P k ,  = -  k + t ' + l ~ '  _ Xkf- - rk+l ,+_lb(x2)Pkt+la(Xl)Pkt .  (7.16) 

One may absorb much ambiguity into rescalings Pk.a --* )t(k)Pk.a, P.tb ~ X(l)P.tb, 
which leave the algebras (7.2) unchanged, and solve the braid condition (proposition 

3) by 

xk~ 11+1 =Xkkl l l - '  = ' X ,  x k ~  11-1 = xkk/1/+1 ~--" 

X2=)~ 2 , (7.17) 

and the phase condition (proposition 2) by 

= X-X; (7.18) 

X ~ - X  may again be absorbed in rescalings of Pk.a and P.tb. Thus, there are two 
essentially different solutions: X = X = 1 corresponding to the obvious tensor prod- 
uct a ® b of two exchange field theories; and 

X = - X  = i. (7.19) 

The latter yields the complete dimensional trajectory 

e(hkt ) = e(h~ + h , -  ½ ( k -  1 ) ( l -  1)) ,  (7.20) 

h~ and h t as in eq. (7.8), which gives the Kac spectrum (7.9) for p '  = q, q' = p .  
We lack an argument for p ' =  q, q' = p .  Actually this cannot follow from the 

exchange algebra relations alone which do not exclude a decomposition of 
the Virasoro generators L ,  = ~)~ L~, i). We must make an assumption concerning the 
uniqueness of the stress-energy tensor. 
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Denoting ~a (respectively Jb)  the d = 2 quasiprimary fields in the vacuum sector 
occurring in the short-distance expansions of primary fields a.  a (respectively b. b), 
we require 

=:U b = J - .  (7.21) 

In order to check this relation we compute the four-point functions (~2, aaaafa), 
(I2, bbaaI2), (fLbbbbfa), and compare their short-distance limits (~2,~J~=I2), 
(Ia, Jb~I2) ,  (fa, ~b~bI2) which should have the common amplitude lc, where c is 
the "conformal anomaly" of the theory. The primary four-point functions are 
obtained from their monodromy properties which are in turn determined by the 
exchange algebras of the fields involved. We find 

( ~, a( x l )a(  x2) Pl,la( x3)a( x4)~2 ) 

((Xl--X2)(13 X4))_2h2( 1 x ) _ 2 h 2 2 F l ( 2 - - m 1  2 )  
m + l ' r n + l ' m + l '  ' 

([2, a( x l )a(  x2) P1,3a(x3)a( x4)['l ) 

( 1 m 2 m ) ;  
= a ( ( X l  - -  X 2 ) ( X 3  - -  X 4 ) ) - 2 h 2 ( 1  - -  X)-2h2xh32F1 m + 1' m + 1 m + 1 ; x , 

(12, b( xl)b( x2)Pl,la(x3)a( x4)$2) 

= (X 1 -- X2)-2hz(x  3 -  X4)-2h2(1 -- X)-1 /2(1  -- l x ) ,  

($2, b( xx)b( x2)Pl,lb( xa)b( x4)$2 ) 

=((Xx_X2)(X3_X4))_2hi ( l_x)_2hi2 f l (2- -rn"  l . . . . .  . 2 )  
m , + l , r n , + l , m , + l  , x  , 

(/2, b( x l )b(  x2)P3,1b(x3)b( x4)~2 ) 

(1 m 2m) 
=ot'((x 1 - x 2 ) ( x  3 - x 4 ) ) - 2 h i ( 1 - x ) - 2 h i x h ; 2 F  1 m' + l ' m '  + l ' m' + l ' X  , 

(7.22) 

where m = p / ( q  - p), 

a =  ~ F ( 2 m - I l F (  rn F 2 i F ( 1 - r n  I / F (  2m I FIrn-l l  2 -  m l , 

and similarly for p /q  ~ p'/q'; x = (x I - x2)(x 3 - x4)/(x  I - x3)(x 2 - x4). 
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The short-distance limits are computed according to sect. 6 with the normaliza- 
tions of ~ ,  b fixed by the requirement that - ( 1 / 2 r r ) f d x  ,~,  b(X) generate transla- 
tions on the fields a, b 

m+3 ) 
Pl'xJaa(X) = li'm~x' -- --OxOx'(X--m x ' ) 2 h 2 p x ' l a ( x ) a ( x ' ) P l ' l  ' (7.23) 

and similarly for ~b(X). Then, we compute the amplitudes 

( m -  2)(m + 3) ( m ' -  2 ) ( m ' +  3) 

Caa = m ( m  + 1) ' Cbb = m ' ( m '  + 1) 

m + 3  m ' + 3  
Cba m m' ' 

which coincide iff m + m' + 1 = 0, i.e. p ' / q '  = q /p .  Then 

c = 1 - 6 (p  - q)2 /pq .  (7.24) 

This completes the construction of (indecomposable) conformal exchange field 
theories with the full BPZ fusion rules. The theories we find are in fact the BPZ 
minimal models. If the horizontal and vertical exchange algebras are computed via 

JR( lo t2 )  ] strand formation as described in subsect. 7.2, with exchange matrices t--a( . . . .  )m' 
(respectively t~(*o~:) 1 ~ for light-cone fields a n (respectively bin) associated with t ' ~b (mlm2) l kk ' l  
~(1,n) (respectively ~(m,1)), then the exchange matrices of light-cone fields Cmn = 
(short-distance limit of b,,. an) associated with ~(m, n) turn out to be 

R k°l°'k212) = i(nl-1)(m2--1)+(n2--1)(m'--l)l R (k°k2) ® R (t°6) I -I  (7.25) 
(mlnt ,  m2n2) * ~12 b(mlm2) a(nln2) 21 

where Iij = d iag( ( -1 )  ( n ' - l ) ( k - k 2 - m j + l ) / 2 )  ® d i a g ( ( - 1 ) ( " F  1)(1-lo+n,-1)/2) are diago- 

nal sign matrices which affect neither the braid nor the phase relations. It is the 
overall power of i in eq. (7.25) that causes the non-canonical dimension h m, n = 

h i ,  n + h ,n ,1  - ½ ( m  - 1)(n - 1); compare this with the remark in sect. 5. 
Note that as a by-product we have computed the conformal anomaly from 

monodromy properties. This should be possible in general [6]. A less indirect path 
from the numerical structure constants R to the numerical value of c is, however, 
lacking. 

7.4. LOCAL FIELDS IN MINIMAL MODELS 

Let us now give some examples of local fields constructed with the light-cone 
fields of two, left and fight, exchange algebras as building blocks. For the sake of 
transparency let us concentrate on the "horizontal" fields of subsect. 7.3. 
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We have started with symmetric exchange matrices R ( )  = R ~ )  of the "elemen- 
tary" field a = a 2. Even without performing the explicit decomposition of the strand 
product  this ensures that - with appropriate normalizations - all exchange matrices 
R (~ of "composite" fields a n are symmetric if n~ = n 2, respectively (nln2) 

JR(.) 1T R ~ n)ln2)=[ (n2nl) ] (7.26) 

Hence, recalling the special case (1) of proposition 4, we conclude that 

% , . ~ o , . ~ ( x )  = E(a+.),,,(x+) ® (a;),,,(x ), 
ll' 

(7.27) 

are parity invariant fields, local with respect to each other. 
The symmetry (7.4) of the elementary R matrices entails the symmetry 

R ( q - I ° ' q - 1 2 ) ]  q - l , q - l ' =  [R(td2) ] (nln2) [ (nln2) ] I1'' (7.28) 

of the composite R matrices. Hence, recalling the special case (2) of proposition 4 
(with i = id), we conclude that 

~(1,n)(1,n)(X) = •(a+.)H,(x+) ® ( a n ) q _ l , q _ l , ( X _ ) ,  
ll' 

(7.29) 

are again parity invariant, mutually local fields. Actually ~ interpolate only among 
sectors Vl, l® Vl,q_ l and have no component acting on the vacuum ~2 ~ V1,1 ® VI, x. 
Thus the correct local field in a model with asymmetric sectors should be q~(1, n)(1, n) 

-1- ~(1, n)(1, n) rather t han  ~(1, n)(1, n)" 
Finally, the fusion rules (7.14) of the composite fields tell that [ q - 2 ] [ n ]  = 

[q - n + 1] • [q - n - 1] which is equivalent to 

[ q -  2l[j(n)l = [j(n + 1)] • [ j (n  - 1)] ,  (7.30) 

where the 1 : 1 mapping j is defined by 

j ( n ) = q - n ,  if m i n ( n , q - n ) = e v e n ,  

j ( n )  = n,  if m i n ( n , q -  n) = odd.  (7.31) 

Recall that eqs. (7.2) were derived from the fusion rules (7.1) [4]. Since aq_ 2 has 
[ g?(lo/2)] isomorphic fusion rules (7.30), t[R(J(t°)'J(12))l(q 2, q 2)]j(1)j(l') must coincide with t--(22) i l l ' -  

possibly with different values p and ~. Inverting the argument by which we 
computed h :  from 7/ and p / q  in subsect. 7.1, we now compute ~ and p / q  from 
hj(z)=hq_ 2. We find p = p  and ~ =  ___7/ (provided h z = h  q 2mod 1, which is the 
case iff p -  q = even, in particular for the unitary minimal models with [P - q[ = 1). 
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Recalling the special case (2) of proposition 4 (with i = j )  we conclude that 

¢(x,2)(~,q-2)(x) = E ( a ~ ) t , , ( x + )  ® (aq_2)j(t),s(r)(X_), (7.32) 
//, 

1 is a commuting or anticommuting local field of spin h 2 - hq_ 2 ~ ~Z,  interpolating 
among symmetric and antisymmetric sectors Vz, t ® I11, j(t). 

These constructions are strongly reminiscent of the field content of the diagonal 
and nondiagonal modular-invariant partition functions [23]. Some more care is 
needed for other non-parity-invariant fields dp(a,n)(a,q_n) , and for reasons why 
possibly the sums ((7.27), (7.29), (7.32)) should run over a subset of admissible 
values only. 

Among all other minimal models the supersymmetric one [12] together with its 
superconformal generator of dimension 3, G(x)= az,4(x ) ® 1, as a "composite 
field" comes out as a special realization of our approach. It is remarkable that 
superfields can be constructed from "ordinary" exchange fields, and supersymmetry 
emerges without having been imposed. 

7.5. A N A L Y T I C  P R O P E R T I E S  O F  n - P O I N T  F U N C T I O N S  

The n-point functions F ~  = (~2, a,~,(xx)P~... P~° a,~.(Xn)~2 ) may be considered 
[6] as local horizontal sections in complex vector bundles over C n/S, with a flat 
connection, in which the representations of the braid group (proposition 5) describe 
the holonomy group of parallel transport. The matrices p(b)  act on the labels 13 and 
a. The action on a is just the permutation 7r(b) ~ S,. 

The monodromy subgroup {p(b)[~(b) = e ~ S,} generated by p(o 2)  describes 
the parallel transport in a flat connection of complex vector bundles over C". The 
monodromy matrices act only on the labels 13 and describe the linear transformation 
of all conformal block functions, contributing to one local n-point function, into 
each other under analytic continuation of x i around xj. 

The linear monodromy behaviour implies [24] that the conformal block functions 
are solutions to algebraic partial linear differential equations (PLDE's) of the Fuchs 
type. In general the latter are not uniquely specified by the monodromy, since 
quasiprimary fields share the monodromy properties of their primaries. Already 
Riemann [25] has discussed how the powers of (xi - x j)  near the singularities - i.e. 
the dimensions d~ and h~ involved - and the associated monodromy determine the 
PLDE's  and their solutions. 

In the minimal and WZW models, the PLDE's are obviously the equations 
inferred from the existence of degenerate states in the Verma modules [9,11]. From 
the fusion rules (7.1) and the construction of proposition 5 one learns that every 
four-point function involving at least one "elementary" field a = a 2 has at most two 
"channels" P~2; i.e. the monodromy matrices are at most 2 × 2. Then the corre- 
sponding P L D E ' s -  which can be converted into ordinary LDE's in the variable 
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X = ( X  1 - -  X 2 ) ( X  3 --  X 4 ) / / ( X 1  --  X 3 ) ( X  2 --  X4)  -- a r e  o f  at  m o s t  s e c o n d  o r d e r ,  a n d  t h e i r  

solutions are hypergeometric functions, up to powers of x and (1 - x) and polyno- 
mial factors. By comparison with the known monodromy behaviour of hypergeo- 
metric functions [26], the conformal blocks can be read off their monodromy 
matrices, up to polynomial factors of degree increasing with the level of quasipri- 
mary fields [19]. 

As an example we compute all primary four-point functions 

([2, akt( x1)a,2( x2)Pk, t±la12( x3)ak,( x4)[2) 

=: ( x  1 - -  X4)-2hkt(X2 -- X3)-2h~2X-hI~-h~,f+_(X). (7.33) 

Eq. (3.10) and a similar equation for R ~°t~) provide the monodromy matrices O] = P2. 
P2 is given by the exchange matrices (7.2). Thus the (positive-oriented) analytic 
continuation of x around 0 effects a factor of e(h~,t+l) on f+(x), and the 
(positive-oriented) analytic continuation x ~ 1/x is described by 

= e(h12)x-2h12 2hk,R(")(f-(x) 

f+(x) 
(7.34) 

Taking into account the powers of the singularities at x = 0,1, ~ and comparing 
with the analytic behaviour x -* 1/x of hypergeometric functions, we could derive 

f+(x)=c+(1 x)h13xhk.'+12Fl(P q - k + ( l ± l ) P , l + k T - I  p ) - -  - - ,  " ; X  , 
_ _ q q 

( 7 . 3 5 )  

3" k l 3" l + k - I  3" k + ( l + l )  p P . . . . .  3' l - k +  ( l - 1 )  
c q q 

3"(x) == r ( x ) / r ( 1  - x ) .  (7.36) 

The same results have been obtained previously with different methods [27]. The 
above computation illustrates that our methods in principle are not weaker than 
others. There is the advan tage -  as compared with the solution of PLDE's by 
multiple contour integrals - that we work from the beginning with a natural basis 
FI3 ~ of solutions, and have control over their analytic properties. 

Let us now turn to an interesting side-remark [6] concerning the n-point functions 
of the "elementary" fields a = a 2 and the corresponding representations O of the 
braid groups B n. One checks easily that all matrices (7.2) satisfy R 2 = ~/(1 + ~ )R  - 
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gi = ( _  - 1  , = t°rl) Pi, t = ( - - ~ )  - 1  e i ( l + g i ) / ( l + t ) ,  ( 7 . 3 7 )  

this entails 

or, equivalently 

g2  + (1 - t ) g  i -  t = O, (7.38) 

e 2 = e i . (7.39) 

These are - besides the representation conditions of the braid group - the defining 
relations of the Hecke algebra H , ( t )  [28] generated by g,. The projectors e i are real  

in the case of uni tary  R matrices. 
Actually the Hecke algebra relations just tell that the generators gi, and thus p~, 

have only two different eigenvalues. This property, in turn, just reflects the two-fold 
branching of the fusion rules (7.1). Consequently, the exchange algebra of composite 
fields will generally not give rise to "Hecke-type" representations of B,. 

Next, it is easy to verify that the projectors e i satisfy 

eiei + le i = ,re i , 

fl =- .r-1 = 4 c o s 2 (  ~ r p / q  ) . (7.40) 

These are - besides the Hecke algebra relations - the defining relations of the Jones 
algebras Aa , ,  [29]. Our unitary cases B = 4cos2(rr /q)  have been identified previ- 
ously [29] as the only /3 values (except /3 = 4) for which unitary "Jones-type" 
representations of the braid groups exist. 

Moreover, Jones has classified [29] the cases in which these representations define 
f i n i t e  matrix groups. In our context this is equivalent to the property of the n-point 
functions to be algebra ic  functions. The result is that for q = 3, 4, 6,10 the n-point 
functions (for q = 10 only n < 4) of the elementary fields are algebraic functions. 

q = 3 corresponds to the vertical field ~(21) (h = ½) of the Ising model (c = ! )  -" 2 " 
q = 4 corresponds to the horizontal field q'02)- (h = ~6) of the Ising model, and to 
the vertical field q~(21)- of (the universality class of) the tricritical Ising model 
(c = 7) .  q = 6 corresponds to q~02)- in (the universality class of) the three-state 
Potts model ( c =  4), and to ¢(21). in (the universality class of) the tricritical 
three-state Potts model ( c =  6). q =  10 is realized in the models with c =  14 15 

__ 52 and c -  33. 
The Ising model functions are well known. For c = ~, h12 = ~, we have computed 

from the analytic exchange behaviour of 

Q, a 1 2 ( x 1 ) a 1 2 ( x 2 ) e 1 3 a 1 2 ( x 3 ) a 1 2 ( x 4 )  ~2) = 1--[ ( x i -  x j ) - l / 1 2 f  +_(x),  ( 7 . 4 1 )  
11 i <j 
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the algebraic  functions 

f+(x) = c'j(x)i/X2{e3=lE ( - -e) { l  - e j ( x )  - I / 3  = c+xl/2(I + O(x)) 

f-(x)=c'j(x)l/X2{e3=iE {1--ej(x) -I/3 =c-x'/6( 1 + O(x)) 

2 1 3 5 
c+ r ( - ~ ) r ( ~ ) r ( ~ ) r ( a )  2_13/6 
- -  = V - - 7 ~  ~r--7-gg-G-- ~-T-b-/~] N = 3 x c r ( ~ ) r ( ~ ) r ( - ~ ) r ( ~ )  ' 

(7.42) 

where  the sums extend over the three cubic roots of unity, and 

j ( x )  = ~ ( 1  - x + x2)3/x2(1 - x )  2, 

is a famil iar  invar iant  of the theory of elliptic v%functions [30]. 

By eq. (7.35), the four-point  functions of  a12 for all minimal  models  are expressed 
as hypergeomet r i c  functions. The  cases q = 3, 4, 6,10, p = q  _+ 1, precisely fit into 
the f amous  Schwarz list [31] of  algebraic hypergeometr ic  functions. To our knowl- 
edge, the explicit  formulae  

2 - F 1 ( - 2 , 6 ,  3 , 1  1" l " x )  = (1--Xq'-X2)I/4~/1 E 
e3=1 

{1 - ej( x ) 1/3 

3 X 2-13/6X2/32Fl(~,~;~; x ) = ( 1 - -  x + x2) 1/4{½e3=17~ ( - e ) ~ l - - e j ( x )  -1/3 , 

(7.43 t 

are not  d isplayed in the handbooks  on hypergeometr ic  functions. 

7.6. COUNTEREXAMPLE 

We have solved the braid relations (3.11) for  a field a = a# with the following 
as sumed  fusion rules ([1] = [vacuum]) 

[4][ i ]  = [4] ,  i =  1 , 2 , 3 ,  

[4][4] = [1] * [2] • [3],  (7.44) 
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R (ii) = :  1"/, i = 1,2, 3, 

R(iJ) =:7/to, i ~ j ,  = 1,2,3,  

2to + 1 t o - 1  t o - 1  ) 
[ R(44)]ij = % 3 t o - 1  260+1 t o - 1  

t o - 1  t o - 1  2 t o + l  

t 0 = e ( + 1 ) .  (7.45) 

The phase relation (3.9) can not be satisfied with R (44), indicating that eq. (7.45) 
cannot be associated with a conformal exchange algebra in the sense of this paper. 
Still this solution may have a relevance for the more abstract approach to local 
QFTh 2 beyond CQFTh 2 suggested in sect. 5. 

The counterexample shows that proposition 2 not only constrains the dimensional 
spectrum in terms of the R matrices, but in fact constrains the exchange matrices 
themselves, and thus the fusion rules compatible with conformal invariance. 

8. Conclusion and outlook 

We presented the concept of a light-cone field theory with a non-commutative 
field algebra: the exchange algebra. Exchange field theory is regarded as a building 
block of non-perturbative interacting local QFTh 2. We discussed exchange field 
theory in much detail in the specific context of conformal QFTh 2 as a most 
n a t u r a l -  and for the moment the only available-  realization. We outlined the 
strategies for a conclusive analysis of CQFTh 2 with finite fusion rules. 

Although we expect that many of the ideas, if properly generalized, may tran- 
scend conformal and even two-dimensional QFTh [32], we made no real attempt at 
generalization in this paper. Furthermore, we leave to a future publication all 
aspects of representation theory of conformal exchange algebras related with KMS 
[3] temperature states. Such aspects will be useful [32] for the concept of "soliton 
completeness" and the reduction of so-called modularity properties of partition 
functions [23] to causality and completeness principles. 

We would like to view exchange algebras as " the liberation of the very subtle 
ideas of Yang, Baxter [14], and Faddeev [33] from their narrow confinement to 
special lattice models". We have given arguments that (suitably generalized to field 
algebras with infinite families of quantum fields) the braid identities are properties 
of Einstein-causal CQFTh 2 "par  excellence". As an extension of the recent work of 
Karowski [34] on the use of the algebraic Bethe-ansatz technique to relate the RSOS 
models via a 0-angle with the six-vertex models (or to relate minimal models with 
the Coulomb gas (respectively Sine-Gordon) field theory), one should study in our 
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a lgebra ic  l anguage  the f ie ld- theoret ical  t r ansmuta t ion  of  exchange a lgebras  with 

Burau  b r a i d  represen ta t ions  in to  those of the min imal  models .  This  may  well also 

l ead  to a " l i b e r a t i o n "  of the Bethe-ansatz  technique f rom special  s tat is t ical  mechan-  

ics. W e  have  in mind  a yet  unknown use of  the Bethe ideas (with comple te ly  

d i f fe ren t  phys ica l  content)  for the sys temat ic  cons t ruc t ion  of  (vacuum) representa-  

t ions  of  exchange  field algebras.  

The  i m m e d i a t e  area  of  app l ica t ion  of  d = 2 C Q F T h ' s  is of  course the unde r s t and-  

ing  of  the universa l i ty  classes of  surfaces ( thin films, layers) of cri t ical  systems of  

c o n d e n s e d  mat te r .  I t  is r emarkab le  (perplexing)  that  na ture  reveals  its deepest  

causa l i ty  secrets  in an area  whose phys ica l  pr inciples  are not  d i rec t ly  re la ted  to 

E ins te in ' s  causal i ty .  

Note added 

A f t e r  comp le t i on  of  this work  we became aware  of  ref. [35]. In  their  search for  

invar ian t  l ink  po lynomia l s  these authors  discuss very sys temat ica l ly  the l imit ing 

process  l ead ing  f rom Y a n g - B a x t e r  to b ra id  matr ices,  as well as (in our  te rminology: )  

the  p ro j ec t ion  on to  b ra id -group  representa t ions  of compos i t e  fields out  of s t rand  

p r o d u c t s  of  e l emen ta ry  representa t ions .  
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