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Among the "secondary fields" of Belavin, Polyakov, and Zamolodchikov, the quasiprimary 
fields are distinguished by their covariant behaviour under infinitesimal Mtbius transformations. 
Local n-point functions can be described in terms of the numerical amplitudes of 3-point 
functions of quasiprimary fields. The positivity of the full field theory is guaranteed if certain 
nonlinear consistency conditions among these constants can be satisfied by real numbers. 
Constraints arising from these conditions are discussed. 

1. Introduction 

The understanding of two-dimensional conformally invariant quantum field 
theory has considerably advanced since the work of Belavin, Polyakov and 
Zamolodchikov [1]. The new, and by now very familiar techniques are most 
powerful for the construction of eucfidean correlation functions. However, the 
"zeroth Wightman axiom" fell somewhat out of reach: the requirement that field 
operators are represented on a Hilbert space with positive definite norm. Friedan, 
Qiu and Shenker [2] have found necessary, and very restrictive conditions for the 
admissible representations of the energy-momentum tensor field; but the situation 
remains unclear for other fields occurring in the theory. 

In this paper we shall introduce an algorithm for the study of positivity in 
conformally invariant theories. The algorithm applies directly to Wightman distribu- 
tions in the Minkowski region. For a good understanding it is necessary to have a 
clear view of the global aspects of Minkowski quantum field theory in contradistinc- 
tion to the local, euclidean point of view [3,1]. 

The most important issue in our "global" approach is the transformation law of 
fields under ~ b a l  conformal (M/Sbius) transformations SL(2, R), and more gener- 
ally under Diffce~t(R), the central extension of the covering group of circular 
diffeomorphisms, and its consistency with Einstein causality. This transformation 
law involves a decomposition of local Minkowski fields into nonlocal parts which 
pick up different complex phases under the action of a central element of SL(2, R) 
(sect. 2). For these irreducible parts there exist global operator product expansions, 
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which in general involve (with the exception of canonical operators such as the 
energy-momentum tensor) integration over the whole light-cone (sect. 3). Unlike 
Wilson expansions, global expansions take a simple form only if expressed in terms 
of the nonlocal fields. They pose no convergence problems. 

In contrast, the Kac-Feigin-Fuchs-BPZ approach [3,1] is based on the study of 
euclidean fields and their derivatives at a special analytic point, which may be either 
the point u = i in the upper halfplane (light-cone formulation) or the point z = 0 of 
the compact (circular) quantization. Global expansion techniques which involve 
integration over the entire light-cone are not used in this "local" approach. The 
existence of nonlocal fields with two quantum numbers (the scale dimension and the 
phase) would be difficult to see in this framework. 

Let us, before continuing the schedule of this paper, clarify the distinction 
between operator aspects and the so-called euclidean field theory (the analytically 
continued correlation functions of statistical mechanics). For example the formal 
symmetry group SL(2,C) of the euclidean theory is not the quantum mechanical 
symmetry group of local conformal field theory. The latter is SL(2,R)c, the 
complexification of the universal covering of the Mrbius group [4, 5]. This is only a 
semi-group (represented by non-unitary operators), acting on the enlarged domain 
of analyticity of local Wightman functions which has a complicated structure 
interweaving both light-cones. 

Most of the contour manipulations done on analytically continued correlation 
functions can be derived from operator relations, but there is no general equiv- 
alence. Certain euclidean points as z = 0 in Kac-Feigin-Fuchs representation theory 
have an operator formalism attached to them: due to the spectrum condition local 
states at u = i (light-cone picture) or z = 0 (compact picture) are exponentially 
damped and highly normalizable. Since arbitrary contour integrations cannot be 
done on exponentially damped states only, such manipulations are meaningless on 
operators and states. For a recent more detailed presentation of the operator 
approach we refer to ref. [5]. 

In sect. 4 we show, how the global operator product expansions can be used in 
order to derive transformation laws of quasiprimary fields under general diffeomor- 
phisms of the light-cone. 

In sect. 5 we exploit the general structure of 4-point functions implied by the 
global operator expansions valid on the vacuum. We establish a necessary and 
sufficient criterion for the positivity of the Hilbert space representation of local 
fields. This is evaluated recursively for the energy momentum tensor field in sect. 6, 
reproducing the results of ref. [2] in a different, field theoretical language. 

For the study of representations of general fields one needs to understand the 
correct phase prescriptions of global operator product expansions valid between 
arbitrary states. The relation of this question with a recent insight into algebraic 
properties (which we called "exchange algebra") of light-cone fields [6] is sketched 

in sect. 7. 
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2. Transformation laws under M6bius transformations 

The group of conformal transformations of two-dimensional space-time is the 
direct product of two MiSbius groups SL(2,R)L,R acting on either light-cone. We 

den°te  by u := x + t' o := x - t the light-c°ne variables" The element A -= ( "v ~ ) ~ 
SL(2,R)L acts on u as 

~u+/~  
u ~ f A ( u )  -- - -  

T u + 8  

Let 

Aspoc:(1 Asc e:(  j20  °J2) A os:(0 
denote scale transformations, translations, and special conformal transformations 

respectively. There is a compact subgroup U(1)= [( c°s'2¢ sinl2q)/\ which is gener- \ -sin½q~ cosl~,]J 
ated by the "conformal hamiltonian H =  ½(o -~)such that e -2=i/4= - ~  takes u 
into itself. ~ ' 

A conforrnal field q~(u,v) transforms under an element of SL(2,R)I. like a 
covariant tensor of anomalous dimension: 

U(A)ep(u,  o ) U - I ( A )  = ~ du ] eP(fA(u)'  V) (1) 

and similarly for the other light cone. The respective exponents d, d are the 
light-cone scale dimensions of the field ¢ = +a,~. 

The transformation law (1) is meaningful only if d f n / d u  = ('/u + 8) 2 > 0. It has 
to be completed by a specification of the complex phase beyond the singular point. 
It has been observed [7] that an irreducible transformation law like (1) for local 
fields is in conflict with the Einstein causality principle. 

The solution to this apparent problem [8] comes from the fact that the local field 
¢ad does not transform homogeneously under finite MSbius transformations. There 
is a spectral decomposition 

respect to the nonlocal Hilbert space operators Z = e -2~iL0 ~ SL(2,'--'---R)I J with 2= 
e2"iL°~ SL'~(2,N-)R, which are minimal central elements of the coveting groups 
representing the trivial light-cone transformations e-2~m~SL(2,R)L,  e2~i'q~ 
SL(2, R)R. By definition, the nonlocal parts eo~ transform homogeneously under 
Z, Z: 

Zeo~a( u, v) Z - t  = e -  2~i(a-e)a'~g-t , v) . (2) 



232 K.-H. Rehren, B. Schroer / Conformal QFT 

(Here and in the following, the respective formulae for the v light-cone are obtained 
by replacing u --, v; i ~ - i; d, ~, Z . . .  --* d, ~, Z . . . ) .  For a free field, the above 
spectral decomposition yields just two parts: the creation part (~ = 0) and the 
annihilation part (~= 2d). The nonlocal parts ~ of interacting fields are thus 
subtle generalizations of the creations and annihilation parts of free fields. Like the 
latter they have no euclidean analogue. In the case c < 1 which we are interested in 
(see below) the spectra of L 0, Z o are discrete, and the number of nonlocal parts of a 
local field is finite. 

Now, the complex phases in the MSbius transformation law (1) are specified for 
the nonlocal parts by 

= ka~-~-Iku v),  e(Ascale)dP~d~(U,t))u-l(Ascale) "t"dd~, , 

V( Atrans)dP~lg( u, v ) V -  l( Atrans) = dp~{ u ~a~ +B,v) ,  

" ) U(Aspec)d#dg(U,v)U_l (Aspec)=(1  + yu)_(2a,~)&ea~( u ,v , 

where 

(1 + yu)-(2a'~):= (1 + y(u + ie)) -2a+~(1 + y (u  - ie)) -~ (3) 

There is no complex phase for the conformal transformations described by Ascal e 
and A tr~s which correspond to Minkowski scale and Poincar6 transformations. 

Following ref. [8], the spectrum condition implies, that on the ket vacuum 10) 
.2d,2d only q ~  can be non-zero, and on the bra vacuum (0[ only ~a,J • From the 

invariance of the vacuum under Z we see, that ~ad[ 0) = q~[ 0} are eigenstates of Z 
with eigenvalue e -2~id. The Hilbert space may be decomposed into sectors -~h~ on 
which Z, Z take values e-Z'~ih, e 2~i~ where h, h exhaust modulo Z the spectrum of 
scale dimensions of conformal fields. 

In a local 3-point function (q~ald~q~agj~a333) only the part q~a~j2 with ~ = d 2 + d 3 - 
d 1 mod Z can contribute. 

The most important progress [1] in two-dimensional conformal field theory is due 
to the realization that primary fields q~h~ must exist, which transform like covariant 
tensors even under general (infinitesimal) diffeomorphisms of the light-cone. The 
states created by such fields from the vacuum are highest-weight states for the 
irreducible representation vectors ~h~ in Hilbert space of the energy-momentum 
tensor fields T( u ), T( v ). 

However, primary fields cannot exhaust the field content of a theory. Instead, 
short-distance operator product expansions (Wilson expansions) of a primary field 
q~h~ with the energy-momentum tensor will generate an infinite number of secondary 
fields ("conformal family"). A basis of these is an infinite set of quasiprimary fields 
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qaaa of dimensions d ~ h + N0, d ~ h + No, and their derivatives. By definition a 
field is quasiprimary if it transforms like a covariant tensor under MiSbius transfor- 
mations. Under general diffeomorphisms the quasiprimary fields of one conformal 
family are transformed among each other; the "mixing coefficients" of such 
transformations laws must contain the Schwarz derivative Df = f ,,  / f ,  _ 7(f3 , , / f  ,) 2 
of the diffeomorphism, which vanishes if and only if f is a MiAbius transformation 
(see sect. 4). 

The most familiar quasiprimary field is the energy-momentum tensor component 
T(u) with the transformation law 

T(u)  ~ f ' ( u )  2. T ( f ( u ) )  + ~2c(Df) (u) .  1, 

where the identity operator 1 is the primary field q~0o of the conformal family of the 
quasiprimary field T -  q~2o- 

The parameter c is the conformal anomaly parameter. It plays a crucial role in the 
classification theory of conformally invariant quantum field theories. In particular, 
if the number of primary fields is finite, then c must be less than one [10], and if 
c < 1, then ¢ can take only values in the discrete series c(m) = 1 - ( 6 / m ( m  + 1)), 
m = 2, 3, 4 . . . .  [2]. In this paper we shall concentrate only on this case. 

3. Global operator product expansions 

For operator products of conformal fields, global expansions exist and may be 
discussed as group-theoretical expansions in euclidean Green functions [11] or of 
bilocal states [12]. In Minkowski space it is most convenient to work with the global 
expansions in terms of nonlocal parts of local fields [8] 

eaala,( xl)ep<a2( x2)l = E_ 2ei~¢d3-a')c312 f d2x3 K(  di, di; xi)d?d3a3( X3)lO) (4) 
d3d3 

where the sum extends over fields with dimensions d 3 = d l  + d 2 - ~ m o d L  d 3 = 
d l +  d2 - ~mod Z. 

For the expansion of local fields, the sum over all values of ~, ~ must be taken. 
Such expansions are valid on the vacuum only, since the spectrum condition 

(analyticity in the upper complex halfplane of the time coordinate of x2) is essential 
for the existence of a well-defined integral kernel. The kernel K is uniquely 
determined by the transformation laws (3): 

K(d , ,  d,; x , ) =  K ( d , , u , ) .  K(d , ,  v,), 

K(d i ,  ui) 

( 2 ~ r ) - l r ( 2 G ) r ( x 3 ) r O  - x ~ )  - 1  

(u 1 -- u2--ie)X'(Ul - u3 + ie)M-l+2d3(ul -- U 3 --ie)l-2d3(u2--u3 + ie) x3 ' 

(5) 
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with ~tl =dl  + d 2 + d 3 - 1  , X 2 = d 1 - d 2 - d 3 +  l, ~ t 3 = - d l + d 2 - d 3 + l  , and a 
similar formula (u ~ v, d ~ d, iE ~ - ie) for K(d~, v~). 

We orthonormalize the hermitian fields such that their 2-point functions are the 
following distributions giving rise to localized states of positive norm square: 

e - i~ r (d  d) 

( { ~ l ( X l ) { ~ 2 ( X 2 ) )  = ~(*l=*2=~[~dd)(U 1 __ U2 __ i e ) 2 d (  U1 __ U2 -'I'- i E )  2 J "  ( 6 )  

Then the coefficients ¢312 in eq. (4) turn out to be the amplitudes of 3-point 
functions: if eq. (4) is multiplied by a bra state (0 I~a~&(x3), the u 3 integration path 
can be closed in the upper halfplane, exploiting the spectrum condition. For u I > u 2 
it passes along the real interval (u2, ul) below, and back above the real axis. The 
two pieces differ only by their complex phases, the difference of which contributes a 
factor of 2i sinTrX 3 ---2~ri/F(~t3)F(1- X3) to an integral extending from u 2 to u 1. 
This integral yields a particular hypergeometric function [13] that reduces after 
cancellation of all, possibly singular F factors to the usual power-law form of the 
3-point function: 

C312 (7) 
( U  3 - -  U 1 - -  i ~ ) d 3 + d l - d 2 ( u 3  _ U 2 --  i e ) d 3 + d 2 - d l ( u l  _ U 2 --  i e ) d l + d z - d 3 ( u )  

where (v) indicates similar factors referring to the v light-cone. 
Now suppose that one of the fields contributing to the expansion (4) creates 

"ghost states" of negative norm square from the vacuum, thus violating the zeroth 
Wightman axiom. Its 2-point function then differs from the normalization (6) by a 
( - )  sign, which changes the 3-point function (7) by a ( - )  sign. We prefer however 
to have eq. (7) valid for all fields, i.e. c312 should always be the amplitude of a 
3-point function. Thus we must introduce a factor of ( - 1) into the expansion (4) for 
every field violating positivity. Of course, in an admissible quantum field theory 
such fields do not occur. We return to this point in sect. 6. 

Since T(u) transforms the fields (q,h+.,ald fixed, n ~ N0} irreducibly among 
each other and independently of T(v), the coefficients in (4) and thus the ampli- 
tudes c312 factorize as follows 

__ prim n3nln 2 --~3nln2 c312-  ¢3x2 "N 12 "N312 , 

prim where the 3-point amplitude c312 of the corresponding primary fields depends only 
on the respective conformal families, while N3]~"1": and N312 are relative ampli- 
tudes within the families for fields of dimensions di= hi+ l'li, d i=hi+ ~. The 
notational distinction between h, the dimension of a primary field, and d = h + n, 
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the dimension of a quasiprimary field in the same family, will be made throughout 

this paper. 
F rom locality of the fields (6) with respect to each other, one concludes by 

prim complex conjugation and analytic continuation of 3-point functions that ~/c~i k 
(where 71 = 1 resp. ~ = i if among q~i, q~j, q~k there are no resp. two Fermi fields) and 

n n n k f i i T t  f i  N.,jk.; ~ , N.jk~ k are all real numbers. Moreover the symmetry 

n n n  i ] ~ ' i j k  ~ 

is valid. These properties are crucial for the discussion of the positivity requirement 
for Wightman distributions, sect. 6. 

4. Quasiprimary transformation laws under diffeomorphisms 

This section is not necessary for the rest of the paper. We want to include it here 
as an illustration, how the transformation laws of quasiprimary fields under 
diffeomorphisms other than MSbius transformations can be derived from the 
operator product  expansions (4). 

Infintesimal conformal transformations of conformal fields are generated by the 
energy-momentum tensor, the fight-cone components of which are themselves 
conformal fields. We shall thus consider the expansion (4) for ~1 = T, in which case 
only fields ~3 of the conformal family of q~2 contribute. We have h 2 = h 3 =: h, and 
d 2 = d 3 ='. d. We shall use the abbreviation ( - 1 ) "  ~f~-N~ 2n =: Nm, = N,m for the 
coefficients occurring. Performing the same deformations of the paths of integration 
as in the preceding section, we obtain formally 

r ( u l ) ~ h + o , a ( u 2 ,  v2)10) 

= E Nm, - F(2h + 2n) 1/2)m n 2 

,,=o r(2h + m + n -  2 ) F ( 2 -  n + m) ( u l -  

fo ldttl_.+m(1 . 2 h + n + m - 3  , . X - -  - -  . t)  h+m,at u2 + tt Ux u2), v2)lO) 

Expanding q~h+m, d into a Taylor series around u2, and cancelling the divergences of 
the t-integrals with the divergent F-factors, we obtain the Wilson expansion 
(suppressing the trivial v dependence from now on): 

T( Ul)*h+n ( U2)IO > = (( h n c y/)( b/1 -- 1//2) -2 (Ph+n(/'/2) q- ( 1/1 --/'/2) -lc9 udPh+n( 1/2))10> 

n-2 n-m-2 F(2h + 2m) 
+ E N m .  E 

,.=o k=O F ( 2 h + 2 m + k )  

+ (regular terms at u 1 - -  u 2 ) .  
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The commutator  with (1/2~ri)f~T(Ul)e(Ul)dUl is evaluated by means of differ- 
ent ie boundary values: (u - &)- / -a  _ (u + ie) -l-a = (2~ri/l!)(- O,)la(u). The in- 
finitesimal transformation law of the local field is the same as that of its vacuum 
nonlocal part. Hence under an infinitesimal diffeomorphism u ~ u + e(u) 

+ 
n -2 n - m - 2  

ZNm. g 
m=O l = 0  

F(2h + 2m) - m -  2 
F ( 2 £ + m + n : l -  2 ) (  n l ) 

X 
o'%(u) 
(t+3)! 

_ n - m - 2 - 1  
a~) ~h+m(u). 

With the help of the composition law g o f of diffeomorphisms we have integrated 
these variations to finite transformation laws under u ~ f ( u )  for q~h+.(U)= T(u), 
and for normalized (eq. (6)) quasiprimary fields t 4 and t 6 of dimension 4 and 6 in 
the 1-family, and for a generic field q,h+2(U): 

T(u) ~ f ,2 .  T ( f (u ) )  + ~cDf. 1, 

t4(u ) _+f ,4 .  t4( f (u))  + af,2.  Df . T( f (u ) )  + l c .  la(  Df ) 2. 1, 

t6(u ) _+ f , 6 .  t6( f (u))  4- flU,4. Df " t 4 ( f ( u ) )  + ½aflf '2" (D/) 2- T ( f ( u ) )  

+~ [ ( f , 2 .  ( D f ) " -  5 f"  . f ' .  (Df) '  + 5f ' '2. Df) .  T ( f (u ) )  

+ ( - ~ f ' 3 . ( D f ) '  + 5 f " . f ' Z . D f )  • T ' ( f ( u ) ) + f " . O f .  T" ( f (u ) ) ]  

dph+,(u) ~ f , h + , .  gph+2(f(u)) + 8 f ""  Df. q~h(f(u)), 

(a = ~N~ 4, B = ~ c  } N ~  6, V = ~ N ~  6, 8 = }N °2g). 

We see the Schwarz derivative Df appearing term by term. It vanishes if and only 
if f is a M~Sbius transformation, in which case the transformation law reduces to eq. 
(1). Note  that the above transformation law for q~h+2 is correct only where f ' ( u )  is 
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positive. Beyond the singular point the nonlocal parts of the local fields will split 
apart  due to their different complex phases, as in eq. (3). This cannot be obtained 
by naive integration of the infinitesimal variations. 

5. The general structure of 4-point functions 

Let us return to the vacuum expansion (4) and multiply it by a bilocal bra vector 
(01¢ ~. The kernel integrations can again be performed, very similarly to the above 
calculations. This time the interval integrations yield Appell functions of the type F 1 
(ref. [13], ch. 8) that reduce to ordinary hypergeometric functions: 

< ~1( X1)~2( X2)~3( X3)~4( X4) > = 

U 2 -  U 4 d t - d  2 U l - -  U3 

U 1 -- U 4 \ Ul -- U 4 ] 

(Ul-- u2ld,+d2(H 3-  u4ld,+d4 (U) 

X E ei=(h°-h°)C~nCP~'~ho(X)~o(X), (8) 
ho,,~o 

where the conformal block ~ (x )  is given by the series 

~ h o ( X )  X h° £ (N120 N034 ) ( - x )  n° = nlnzno n o n 3 n 4  2Fl(d2 - d 1 + d o, d 3 - d 4 + do; 2do; x ) ,  
no~0 

(u,  - u 2 ) ( u 3 -  u,) 
X := d i = h i -4- n i . (9) 

(U,-- U3)(U 2 -  U4) ' 

~ ( f f )  is a similar series on the v light-cone. 
The finite sum in eq. (8) extends over all Hilbert space sectors which contain 

" intermediate  states" of the 4-point function. Every term of this sum collects the 
contributions of all quasiprimary fields belonging to one sector. Every term in the 
sum (9) collects the contributions of one quasiprimary field and all of its derivatives, 
which would occur in a short-distance expansion as infinitely many secondary 
fields. If there are more than one quasiprimary fields of the same dimension d 0, n o 
should be associated with a degeneracy index to be summed over, which is indicated 
in eq. (9) by the brackets (NN). The series (9) converge in the "ordered region" 
u I > u 2 > u 3 > u4(0 < x < 1) and are defined outside by appropriate analytic con- 
tinuation. 

Eqs. (8), (9) can be exploited in various ways. Suppose a conformal block is 
known from independent calculations, e.g. from Ward identities [1] or by "pseudo" 
Coulomb gas techniques [14]. Then the relative amplitudes for infinitely many 
quasiprimary fields can be read off by comparison of the power series around x = 0. 
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It  can be observed that n . . . .  N~j k ~ = 0 if one of the n equals 1, indicating that 
quasipr imary fields of dimension one unit above the primary dimension do not 
exist. Similarly, in the conformal family of the identity operator (h = h = 0) quasi- 
pr imary  fields of dimension 1, 3,5,7 do not occur, since the corresponding N (") 
vanish identically. 

The most  important  application of the expansions (8), (9) consists in signalling 

ghost state contributions to local 4-point functions. The method is illustrated, and 
the conditions of non-existence of states of negative norm square are evaluated 
recursively, in a most simple case in the next section. 

6. Positivity of the energy-momentum tensor field representation 

Let us specialize to the c a s e  ~2  = ~3 = t : =  (½c)-1/2T in eq. (8). T(u) does not 
change the Hilbert  space sector, and is trivial on the v light-cone. Hence h 0 = h I = 
h a = :  h ,  and d 1 = d 4 = a7 0 =." d. We want to consider h and c as free parameters for 

- ,   Tm2n =.. N,, = Nn m the moment .  Introducing as in sect. 4 the coefficients t - )  V ~c ~'hoh 
we get f rom eq. (8) 

( d~h+rn,d( X1)T( ii2)r( u3)@h+n,d( X4) ) 

U --  U 4 
Ul --  I l 4 ) h + m - 2 (  UlIll_ u4U3 Jib+n-2 

( i l l  - -  u2)h+m+2(U3 -- U4) h+n+2 (U1 --  U4) TM 

X e-i~(h-h)(--1)mx h ~ ( NmistNIn)xI2FI (2 - n + 1,2 - m + l; 2l; x ) .  (10) 
1=0 

Here we have introduced, according to our remark in sect. 3, a sign factor sl, which 

equals ( - 1 )  if and only if the corresponding intermediate state created by 4'h+t,d 
has negative norm square. It may be considered as a "metr ic"  s t = diag( + 1 , . . . ,  + 1) 
in a real vectorspace R o/ where D l is the number of independent quasiprimary 
fields of dimension d = h + l. The condition that no ghost fields contribute, is then 
expressed by  s t = 1 D, which is equivalent to the statement that all "scalar products" 
(Nml. Nln ) .'= (NmdtNln) obey the rules of euclidean geometry. 

Now we supplement eq. (10) by the short-distance expansion for the product of 
the two canonical fields T(u) [1] which remains free of phase ambiguities in 

Minkowski quantum field theory: 

r(u ) + r(il ) 
+ + (regular terms at U 2 ~ U 3 ) .  (11) T ( i i 2 ) -  r ( u 3 )  ( i i 2 -  u3) 4 ( u 2 -  u3) 2 
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Inserting (11) into (10) one gets the following consistency conditions: 

239 

.Zg°m. ( x ) : =  Y'. (N.,,-Nt,,)xt2Fl(2 - n + 1,2 - m + l; 2l; x ) ,  
l 

(12a) 

• ~ m n ( X )  = , ~ m n ( X )  = x n + m , ~ m n ( 1 / X ) ,  (12b) 

C X 2 X 
m + N m , ( x  m + x " )  - -  + (regular terms at x = 1). 

" ~ m n ( X )  = 2~rnnX (1 - - X )  4 (1 -- X) 2 

(12c) 

Taking into account that )~'m, has no other poles except at x = 1, o0 we conclude 
from (12b, c) 

C X 2 X m+n 
m + N m n ( X m . k _ x  ") _ _  + E mn k 

J g ° m n ( X ) = ~ m n X  (1__X)4  (1__X)2  k=oOtk X , 

. . . .  R .  (12c' )  Ol k ~ Olm+n_ k ~- 

Eqs. (12a, c ' )  allow for a recursive determination of all the numerical coefficients 
N,  nn and a~,n as rational functions of the so far free parameters h and c. Every 
4-point function ~ m , ( X )  is obtained in closed form after a finite number of 
recurrence steps in m, n and k. Starting which the amplitudes of diagonal 3-point 
functions (q~h+~,dTeph+.,a), which are fixed from the conformal transformation 
laws: N. .  = h + n, we computed for m = n = 0 

(N01.  N10 ) = 0 ,  (13a)  

8 8 
(N°2" N2°) -- 2h + 1 (h2  - ~h )  + 4c  - 2h + ~ ( h  - h l , 2 ( c ) ) ( h  - h 2 , i ( c ) )  , (13b) 

6h 
(8°3" N3°) = (h 4- l ) (h  -~- 2) ( h  - h l , 3 ( c ) ) ( h  - h3,1(c)) , (13c) 

h(3h 3 -  76h2+ 1 0 4 h -  15) 5h(2h + 1) 

(N°4" N4°) = (h  q- 3)(2h + 3)(2h + 5) + (h + 3)(2h + 5) c, (13d) 

where hp, q(C) = ( ( p ( m  + 1) - q m )  2 - 1 ) / 4 m ( m  + 1) if c is parametrized by c = 
1 - 6 / m ( m +  l), m ~ R .  

There is no quasiprimary field of dimension h + 1; in fact the only candidate is 
Ouepha which does not transform like a covariant tensor. If No2 = N2o , determined 
from (13b), turns out to vanish, i.e. h = h l , 2 ( c  ) or h =h2,1(c), then a field of 
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dimension h + 2 cannot exist in the same family, since if it did exist, it would not be 
coupled to q~hd by the energy-momentum tensor field, and were itself primary. 

Now, if q~h+2,~ exists, we computed from (12a, c ' )  with m = n = 2 

(N:I" NI:) = (N:," N,:)  = 0, (13e) 

32h 3 + 92h 2 + 46h + 22 
(N24" N42) = (2h + 1)(2h + 5) + c, (13 0 

and with m = 0, n = 2 

(N01. N12 ) = (No3" N32 ) -~- O, (13g) 

72h2 ( 2h(8h- 5) ) 
(N°4"N42)= ( 2 h +  5) 2 ( - ~ + - i )  + c  . (13h) 

T(u) never couples quasiprimary fields with dimensions differing by one unit, 
since such contributions to the short-distance expansion would violate the infinitesi- 
mal M6bius transformation law (of. sect. 4). This naturally explains eqs. (13e, g). 

Positivity requires a euclidean "scalar product" (N.  N). Since N,,, = Nnm are 
real, (13b, c, d, f) must be non-negative numbers. Even stronger, 

128h(2h + 1) 
(N°4"N4°)(N24"N'2)- (N°n'N42)2= ( h + 3 ) ( 2 h + 5 )  I--[ (h-hp.q(C)) (13i) 

p.q=4 

must be non-negative. If (13i) turns out positive, i.e. h ~ hl,4(c), h4,1(c), h2,2(c), 
there are necessarily two independent quasiprimary fields of dimension h + 4 
present. We have checked such degeneracies in cases where Fock space operator 
expressions are available, e.g. c = ½ (Ising) and h = 0, ½. 

We recognize in (13b, c, i)>/0 the (first) positivity conditions of the matrix of 
scalar products in the Verma module V h of the Virasoro algebra, which have been 
solved by Friedan, Qiu, and Shenker [2]. However, we don't have to deal with higher 
powers of the zeros that appear in the Kac determinant formula [3], since the 
contributions of all the derivatives of quasiprimary fields need not to be taken into 
account independently. In Verma module language, we consider only the subspace 
of highest-weight states Ih + n) of the M~Sbius subalgebra: L 1 Ih + n) = O, which are 
orthogonal to all "derivative states" L 1 IX) . 

7. Outlook 

We have discussed the structure of local 4-point functions of quasiprimary fields 
(eq. (9)) implied by global vacuum expansions. This formula is not really new: in its 
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euclidean version it is essentially contained in ref. [1], appendix A. We have 
exploited this structure for the discussion of positivity, and for the construction of 
closed expressions for certain 4-point functions. As far as the positivity of the 
representation of the energy-momentum tensor field is concerned, our technique 
seems to be more economic than the study of the full level-n matrix of scalar 
products in a Verma module. However, our results are recursive, and are given 
explicitly only at the first few levels. Clearly more skillful analytic techniques based 
on group-theoretical orthogonality properties of the respective families of hypergeo- 
metric functions are needed. The natural setting for this technical refinement seems 
to be Mack's "Plancherel formula" of the conformal decomposition theory [11]. 

In principle the same strategy applies to the study of positivity of general 
interpolating fields, and to the determination of local 4-point functions (¢1~2¢3¢4). 
Such functions in general involve more than one conformal block (on either 
light-cone). It is an important feature that different conformal blocks contributing 
to the one local 4-point function (¢¢¢¢)  are generated by analytic continuations of 
one "master function". This fact, which is easily observed in the Ising model, is 
essential for locality. In a recent study of the Ising model [6] we introduced the 
"exchange algebra of light-cone fields" as an abstraction of these properties of 
functions in terms of light-cone field operators. It provides an algebraic background 
for the intimate relation among different representation sectors of the energy- 
momentum tensor, which is responsible for the existence of modular invariant 
partition functions [10]. Light-cone fields may be regarded as basic constituents of 
the nonlocal parts of conformal fields discussed in this paper. 

In order to apply our algorithm in the case of several conformal blocks contrib- 
uting, it is important to control their behaviour under analytic continuation around 
the singular points, or, at the level of fields, to understand the correct phases of 
operator product expansions away from the vacuum sector. These cannot be as 
simple as eq. (4). Exchange algebra relations tell us that only certain linear 
combinations of operator products of nonlocal parts can be expected to have a 
definite monodromy phase and a global expansion with well-defined integral 
kernels. For these linear combinations the singular behaviour of a 4-point conformal 
block may be controlled at x = 1, and consistency as between eqs. (10) and (11) can 
be imposed. The solutions are expected to be at worst implicit algebraic functions. 

Note added 

After completion of this work we became aware of a recent paper by Furlan, 
Sotkov, and Todorov [15] who analyzed multiplicities of quasiprimary fields of 
given dimensions by explicit constructions in terms of bilocal limits. Some of their 
ideas and conclusions overlap with ours. 
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