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Quadratic constraints on the currents in the principal SU(2n) model stand at the origin of an extended reduction mecha- 
nism. We derive local conservation laws both for the reduced model and for a class of solutions of the principal SU(2n) 
model. 

Introduction. The method of  reduction is a power- 
ful concept  within the discussion of  integrable two- 
dimensional theories, since it elucidates relations be- 
tween o-models and certain other nonlinear systems. 
Let us briefly review the basic ideas: 

We know [1] how to relate a parametric linear sys- 
tem to the principal G-model on the group G. The.re- 
striction of  the principal fields to some symmetric 
space G/H [2,3] provides the linear system with ad- 
ditional structure. We can look for a gauge equivalent 
linear system, which as expression of  this structure 
takes a particularly simple form [ 1,4]. The nonlinear 
compat ibi l i ty  equation now involving a "minimal"  
number of  fields defines the reduced version of  the 
G/H a-model.  Since a linear problem is automatical ly 
related to it, the time evolution of  the reduced model  
can be solved following the inverse scattering pattern.  

In part B of  this letter,  the following observation 
will enlarge the class of  integrable models which can 
be obtained by the reduction of  a-models: Quadratic 
constraints on the currents of  the principal model  as 
well as those on the fields i tself can give rise to suit- 
able structure of  the linear system, allowing for reduc- 
tion. This is demonstrated by an example (G = SU(2n)). 

In part A we shall firstly discuss a weaker constraint 
on the principal SU(2n) currents and find the local 
conservation laws of  the theory.  These carry over to 
the reduced model  of  part B. 

A. Conservation laws. The principal SU(m) model is 

1 defined by the Lagrangian density .6? = --  ~ Tr S~S+SnS +, 
S C SU(m) * 1. The equation of  mot ion is 2S~n = 
S~S+Sn + SnS+S~. Ogielski et al. [5] have found the 
local conservation laws Tr(GN+2S ~ + S~G~r+2)n + 
Tr(GNS ~ + S G~)~ = 0, together with a recursion for- 
mula for GN, which, however, could not  be solved ex- 
plicitly. This task will be carried out when we concen- 
trate on solutions satisfying 

+ _  - t -~  S~S~-S~S~ 1 .  (1) 

Note,  that these properties are reproduced by virtue 
of  the evolution equation of  the principal field, if  they 
are once (in the initial data) realized. 

Eq. (1) means that S~S ÷ is an element of  SU(m) 
and su(m) at the same time. The eigenvalues of  SU(m) 
matrices are of  modulus 1, those of  su(m) matrices 
are imaginary and sum up to zero. Thus (1) is only 
meaningful for m = 2n. 

Actually it suffices to require S~S~ = real • 1, 
+ 

SnSn = real • 1. The normalization can then be per- 
formed by a rescaling of  coordiantes. 

Now the solution of  the recursion formula ofref .  [5] 
is 

G O = S ,  G 1 = 2 S ~ ,  

* 1 Here and in the sequel, the subscripts ~ and ~ denote par- 
tial differentiation with respect to light cone coordinates 

= l ( t  + x), r/= l ( t  - x); ÷ means Hermitean conjugation. 

400 



Volume 93B, number 4 PHYSICS LETTERS 30 June 1980 

N - 1  

ON=eN_IS~--~ G GvG~r+l_vS ~ 
u=2 

N - 1  
1 ~  + +~ Gv~GN_vS ~ , N > I ,  

u= l  

where e N = 0 for odd N, e N = (--1)N/2 for even N. 
We give the first two nontrivial conservation laws: 

+ - Tr(S~S~ + Tr(S~S~)n + SnS ~ )~ = 0 ,  

T r ( S ~ S +  s + + -- a S ~ S ~ S ~ S ~  )n 

1 + + + Tr(~S~S~(StS ~ + SnS~))~ = O. 

where 9 is a n X n matrix satisfying 99 + = real- 1, and, 
respectively, 

01) 
i ( 200  + -  1 2X/O0+(1 - O0 +) ] 

B2 = 2 \ 2 x / 0 0 + ( 1  00  +) 1 -  200  + ! ' 

/ 1 - 200  + + 2 e e l  \, 

C2 - 2 1 -  20~ O+ ~/00 

\ x/oo+(1 _ oo+) 

B. Reduction. The linear system associated to the 
SU(2n) model is [1] 

@~ = UqS, q~n = V ~ ,  

U(~') - ~'A + C "- ~'- 1S~S+ 
2 

V(S')-~ " - I B + D : -  ~ - - I _ I s n s  + 
2 

Let us now intensify the constraint (1) by the addi- 
tional requirement 

S~S + + SnS~ = real- 1. (2) 

This constraint is not automatically reproduced by the 
field equation; instead, it implies a series of further re- 

+ + 
lations like S~S n + SnSt~ = real • 1,which contain ad- 
ditional restrictions for the initial data. Then we can 
fred two SU(2n) gauge transformations q~ -+ h+q~, i = 
1, 2, such that the coefficients of U i = hiUh + + high+ 
and V i = hiVh + + hinh+ with respect to powers of ~" 
become 

B1 2 \ 9  ' 

1 
C 1 =~- 

[ 9~ - -  0 + ¥1 

0 - - -  
x / 1 - ~  , 

x/ l  - ~ +  

D 1 = 0 ,  

D 2 = ~  100+(1--  ~ )  

/ o 

where 0 is a n × n matrix satisfying O0 + = real • 1, too. 
The compatibility Uin - Vi~ + [Ui, Vi] = 0 gives the 
nonlinear differential equations 

1 ( ~ ° + ) ~  
~0~ + 2 1 - ~¢+ 9~ + X/1 - ~ +  9 = 0 ,  ~ +  = real • 1, 

0~0+0 n 
O ~ n + - - + ( 1 - 0 0  + ) 0 = 0 ,  O0 + = r e a l ' l . ( 3 )  

1 - O 0  + 

They define equivalently the reduced model of  our 
interest. 0 and 9 are,related by the invertible transfor- 
mation 

1 
0~0 + = A . ~ 9 ~ 9  + , 

+ x / 1  ~0 ) 9+ 
On--o+=l 1+ I ~ - ~  + n 4 

0 0  + =  1 ( 1  - x / 1  - ~ + ) .  

Under the special assumption 9 = EN129iF i ,  where 
F i are constant matrices with the algebra Filq + + 
P/P/+ = Pi+P ] + P/+P i = 28 i], the system (3) becomes 
equivalent to the reduced O(N) (more precisely: 
O(N)/O(N- 1))o-model [6]. 

It is not likely that the constraints (1) and (2) de- 
fining the full system (3) can be resolved solely by 
some geometric assumptions over the principal field, 
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too. However, this claim remains to be investigated 
exactly. 

Let us now prove, that (3) is really equivalent to 
the principal SU(2n)model  constrained by (1) and 
(2): The smallest symmetric Lie algebra ~ = f e k, in 
which Ui, V i can be embedded such that .2 A, B E k; 
C , D @ f ;  [f , f ]  C f ;  [ f ,k]  c k ;  [k ,k]  C f ,  is ~ = 
su(2n) • su(2n), f is its diagonal, k the off  diagonal. 
U and V are embedded by 

0 ) 
- ~ A  + C ' 

V ~ r  = (~ ' - IB  + D 0 ) 
0 _~._IB + D E ~ .  

The symmetric space is SU(2n) ® SU(2n)/ 
A(SU(2n)) ~ SU(2n), the o-model is the principal 
SU(2n) model [3] .  

Let g = (gl ~2 ) be a solution of  the linear problem 
g~ =U(~" = 1)g, gn = V(~" = 1)g. Then [4] S = g2gl is 
the principal field. In particular this implies S t = 
2g~Agl,  Sn = 2g~Bgl, and therefore (1) and (2). 

Ogielski's et al. [5] B/icklund transformation of  
the principal model conserves constraint (1) but de- 
stroys constraint (2). Hence it cannot be used as a 
Bgicklund transformation for the reduced model (3). 
Nevertheless, the series of  local conservation laws 
generated by it is valid in the reduced model too.  In- 

+ 
setting S = g2gl the conservation laws of  part A are 
easily expressed in terms of 0 and ~o; for illustration: 

~:2 Omitting the indices i = 1, 2 in the following should not 
lead to confusion. 

Tr((1 - O0+)- lO~o~)  n + Tr(OO+)~ = 0 ,  

Tr((1 - ~p+)-l¢~tp~-)n + Tr ( -2 (1  - ~0+)1/2)~ = 0 .  

These laws were already found in [6]. 

Conclusion. We showed the equivalence of  the 
principal SU(2n) model subject to constraints on the 
currents and the integrable nonlinear system (3). This 
is actually an example how the concept of  reduction, 
up to now based on field constraints, can be general- 
ized. 

I like to express my gratitude to K. Pohlmeyer, 
H. Eichenherr and J. Honerkamp for constructive 
discussions. 
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